Thyrotropin releasing hormone (TRH) binding sites in the adult human brain: localization and characterization. 1984

C R Parker, and A Capdevila

In the current study, we found evidence for the existence of binding sites for TRH in synaptic membrane preparations of several regions of the postmortem adult human brain. High levels of specific binding (fmol [3H]Me-TRH/mg protein/2 hr) were found in limbic structures: amygdala (7.1 +/- 0.6, Mean +/- SE), hippocampus (2.8 +/- 0.3), and temporal cortex (2.4 +/- 0.8). Intermediate levels of binding were found in the hypothalamus and nucleus accumbens whereas binding was low to undetectable in frontal and occipital cortex, cerebellum, pons, medulla and corpus striatum. Binding of the radioligand was linear over protein concentrations of 0.05-1.5 mg, and greater than 6 hr of incubation was required to achieve maximal binding. In the amygdala, binding was inhibited in the presence of TRH and Me-TRH but not in the presence of up to 1 microM concentrations of cyclo (His-Pro), TRH-OH, pGlu-His or peptides unrelated to TRH. Pretreatment of amygdala synaptic membranes with detergents, proteases or phospholipases disrupted [3H]Me-TRH binding; pretreatment with DNase or collagenase had no effect on binding. Saturation and association/dissociation analyses of the binding of [3H]Me-TRH to purified amygdala synaptic membranes revealed the presence of a high affinity (KD = 2.0 nM), low capacity (Bmax = 180 +/- 16 fmoles/mg protein) binding site. These results demonstrate that a highly specific membrane associated receptor for TRH is present in the adult human brain. The specific role that this receptor plays in brain function remains to be elucidated.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D013973 Thyrotropin-Releasing Hormone A tripeptide that stimulates the release of THYROTROPIN and PROLACTIN. It is synthesized by the neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, TRH (was called TRF) stimulates the release of TSH and PRL from the ANTERIOR PITUITARY GLAND. Protirelin,Thyroliberin,Abbott-38579,Antepan,Proterelin Tartrate,Proterelin Tartrate Hydrate,Protirelin Tartrate (1:1),Relefact TRH,Stimu-TSH,TRH Ferring,TRH Prem,Thypinone,Thyroliberin TRH Merck,Thyrotropin-Releasing Factor,Thyrotropin-Releasing Hormone Tartrate,Abbott 38579,Abbott38579,Hydrate, Proterelin Tartrate,Prem, TRH,Stimu TSH,StimuTSH,TRH, Relefact,Tartrate Hydrate, Proterelin,Thyrotropin Releasing Factor,Thyrotropin Releasing Hormone,Thyrotropin Releasing Hormone Tartrate
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D018025 Receptors, Thyrotropin-Releasing Hormone Cell surface receptors that bind thyrotropin releasing hormone (TRH) with high affinity and trigger intracellular changes which influence the behavior of cells. Activated TRH receptors in the anterior pituitary stimulate the release of thyrotropin (thyroid stimulating hormone, TSH); TRH receptors on neurons mediate neurotransmission by TRH. Protirelin Receptors,Receptors, Protirelin,Receptors, TRH,Receptors, Thyroliberin,TRH Receptors,Thyroliberin Receptors,Thyrotropin Releasing Hormone Receptors,Protirelin Receptor,TRH Receptor,Thyrotropin Releasing Hormone Receptor,Receptor, Protirelin,Receptor, TRH,Receptors, Thyrotropin Releasing Hormone,Thyrotropin-Releasing Hormone Receptors

Related Publications

C R Parker, and A Capdevila
November 1987, The Journal of clinical endocrinology and metabolism,
C R Parker, and A Capdevila
January 1992, Transactions of the American Clinical and Climatological Association,
C R Parker, and A Capdevila
March 1984, European journal of pharmacology,
C R Parker, and A Capdevila
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
C R Parker, and A Capdevila
December 1999, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!