Mössbauer and electron paramagnetic resonance studies of horseradish peroxidase and its catalytic intermediates. 1984

C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager

We report Mössbauer and EPR measurements on horseradish peroxidase in the native state and the reaction intermediates with peroxide and chlorite. A detailed analysis of the electronic state of the heme iron is given, and comparisons are drawn with related systems. The native enzyme is high-spin ferric and thus has three Kramers doublets. The unusual magnetic properties of the ground doublet and the large energy of the second, (E2-E1)/k approximately equal to 41 K, and third doublet, (E3-E1)/k greater than or equal to 170 K, can be modeled with a quartet admixture of approximately 11% to the spin sextet. All evidence suggests a ferryl, OFeIV, state of the heme iron in compounds I and II and related complexes. The small isomer shift, delta Fe approximately equal to 0.06 mm/s, the (positive) quadrupole splitting, delta EQ approximately equal to 1.4 mm/s, the spin S = 1, and the large positive zero field splitting, D/k approximately equal to 35 K, are all characteristic of the ferryl state. In the green compound I the iron weakly couples to a porphyrin radical with spin S' = 1/2. A phenomenological model with a weak exchange interaction S . J . S', magnitude of less than or equal to 0.1 D, reproduces all Mössbauer and EPR data of compound I, but the structural origin of the exchange and its apparent distribution require further study. Reaction of horseradish peroxidase with chlorite leads to compound X with delta Fe = 0.07 mm/s and delta EQ = 1.53 mm/s, values that are closest to those of compound II. The diamagnetism of compound III and its Mössbauer parameters delta Fe = 0.23 mm/s and delta EQ = -2.31 mm/s at 4.2 K clearly identify it as an oxyheme adduct.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010544 Peroxidases Ovoperoxidase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011524 Protoporphyrins Porphyrins with four methyl, two vinyl, and two propionic acid side chains attached to the pyrrole rings. Protoporphyrin IX occurs in hemoglobin, myoglobin, and most of the cytochromes.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
January 1986, Journal of free radicals in biology & medicine,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
December 1984, Biochemistry,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
October 1977, The Biochemical journal,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
September 1975, Journal of biochemistry,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
July 1979, Biochemistry,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
July 1999, Biochemistry,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
November 1996, The Journal of biological chemistry,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
June 2001, Biochemistry,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
September 1981, Biochimica et biophysica acta,
C E Schulz, and R Rutter, and J T Sage, and P G Debrunner, and L P Hager
September 1972, Biochimica et biophysica acta,
Copied contents to your clipboard!