Molecular biology of adrenergic receptors in the rat and frog central nervous system. 1984

M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz

Recent developments in the characterization of the adrenergic receptors have led to the identification and purification of the binding subunits of the various catecholamine receptors. beta-Adrenergic receptors have been identified in a wide variety of tissues by photoaffinity labeling with the antagonist [125I]p-azidobenzylcrazolol and have been purified to apparent homogeneity from several of these tissues. Thus, beta 1- and beta 2-adrenergic receptor binding sites appear to reside on peptides with molecular weights of 60,000 to 65,000. The alpha 1-adrenergic receptor binding subunit has been identified in several peripheral tissues by photoaffinity labeling with a newly developed probe (4-amino-6,7-dimethoxy-2[4(5(3-[125I]-iodo-4-azidophenyl) pentanoyl)-1-piperazinyl]-quinazoline, or [125I]APDQ). This binding site resides on a peptide with a molecular weight of 80,000. These techniques have been applied to the elucidation of the binding subunit structure of these receptors in the rat central nervous system with the result that beta 1-, beta 2-, and alpha 1-adrenergic binding sites appear to reside on peptides of similar molecular weight to those identified in peripheral tissues (i.e., 60,000-65,000 and 80,000). Using immunocytochemical techniques with antibodies raised to the frog erythrocyte, beta 2-adrenergic receptor, beta-adrenergic receptors were identified at the light microscopic level in regions of the rat and frog brain previously found by ligand binding and autoradiography to be richest in beta-adrenergic receptors. At the electron microscopic level, beta-receptor immunoreactivity was found throughout dendritic processes with local accumulations at certain postsynaptic sites. This finding is consistent with the idea that the density of the receptors might be significantly increased at postsynaptic junctions of adrenergic neurons.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011412 Propanolamines AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives. Aminopropanols
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons

Related Publications

M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
May 2004, Journal of child neurology,
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
May 1998, Current opinion in oncology,
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
February 1987, Biochemical Society transactions,
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
February 1980, Science (New York, N.Y.),
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
November 1974, Nature,
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
January 2003, Journal of child neurology,
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
December 2004, Neurocirugia (Asturias, Spain),
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
January 1999, Progress in brain research,
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
January 1988, Cold Spring Harbor symposia on quantitative biology,
M G Caron, and L M Leeb-Lundberg, and C D Strader, and K E Dickinson, and V M Pickel, and T Joh, and R J Lefkowitz
June 1992, Journal of hypertension,
Copied contents to your clipboard!