Transcriptional organization within an Escherichia coli cell division gene cluster: direction of transcription of the cell separation gene envA. 1984

N F Sullivan, and W D Donachie

A cluster of at least 14 genes, each concerned with some aspect of cell envelope growth, morphogenesis, or function, is located at 2 min on the genetic map of Escherichia coli. We located the envA cell division gene and its promoter within the cluster and determined the direction of transcription of the gene by constructing fusions between its promoter and the galK coding sequence. In addition, we identified the promoter of a possible new gene lying between envA and the secA gene. We also present evidence from gene fusion studies which shows the direction of transcription of the ftsZ(sulB) division gene. The direction of transcription is the same for all three promoters and is the same as that of all other cluster genes for which this is known. We discuss the significance of this observation, together with the fact that every gene examined in sufficient detail within the cluster appears to have its own promoter and to be able to be expressed from isolated cloned fragments. Using a novel variable-copy plasmid vector, we demonstrate that the DNA fragment containing the envA gene is not stably maintained in multiple copies. The construction of two independent, nonoverlapping deletions allows us to conclude that the envA product itself is responsible for this effect.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

N F Sullivan, and W D Donachie
April 1998, Cellular and molecular life sciences : CMLS,
N F Sullivan, and W D Donachie
March 1990, Journal of bacteriology,
N F Sullivan, and W D Donachie
August 1991, Journal of molecular biology,
N F Sullivan, and W D Donachie
October 1989, Molecular microbiology,
N F Sullivan, and W D Donachie
May 1973, Journal of bacteriology,
Copied contents to your clipboard!