Level of rRNA, not tRNA, synthesis controls transcription of rRNA and tRNA operons in Escherichia coli. 1984

R L Gourse, and M Nomura

We have recently proposed a model for the negative feedback control of rRNA and tRNA synthesis in Escherichia coli by products of rRNA operons or their derivatives (e.g., nontranslating ribosomes) (S. Jinks-Robertson, R.L. Gourse, and M. Nomura, Cell 33:865-876, 1983). In this paper, we examined the following questions. (i) Are the spacer tRNAs carried within rRNA operons the products responsible for the regulation of rRNA and tRNA transcription? (ii) Are tRNAs capable of regulating their own syntheses? We measured tRNA accumulations in cells containing plasmids with intact or defective rRNA operons or with tRNA operons. From the results obtained, we conclude that neither the tRNAs encoded within rRNA operons nor the tRNAs encoded in non-rRNA operons are capable of controlling rRNA or tRNA transcription. Therefore, the products responsible for the initial step leading to rRNA and tRNA regulation are rRNAs (or their derivatives).

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001226 Aspartate-tRNA Ligase An enzyme that activates aspartic acid with its specific transfer RNA. EC 6.1.1.12. Aspartyl T RNA Synthetase,Asp-tRNA Ligase,Aspartyl-tRNA Synthetase,Asp tRNA Ligase,Aspartate tRNA Ligase,Aspartyl tRNA Synthetase,Ligase, Asp-tRNA,Ligase, Aspartate-tRNA,Synthetase, Aspartyl-tRNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

R L Gourse, and M Nomura
August 1990, Biochimica et biophysica acta,
R L Gourse, and M Nomura
October 1986, Journal of bacteriology,
R L Gourse, and M Nomura
January 2004, Annual review of genetics,
R L Gourse, and M Nomura
August 1990, Genetics,
R L Gourse, and M Nomura
October 1991, Journal of bacteriology,
R L Gourse, and M Nomura
December 1995, Microbiological reviews,
R L Gourse, and M Nomura
February 1978, Cell,
R L Gourse, and M Nomura
January 1996, Annual review of microbiology,
Copied contents to your clipboard!