Visualization of cAMP receptor protein-induced DNA kinking by electron microscopy. 1984

A M Gronenborn, and M V Nermut, and P Eason, and G M Clore

The effect of specific DNA binding of the cAMP . cAMP receptor protein complex to two DNA fragments (301 and 2685 base-pairs in length) containing the lac operon has been investigated by electron microscopy. It is shown that specific DNA binding of the cAMP . cAMP receptor protein complex induces a kink of 30 to 45 degrees in the DNA with the apex of the kink located at the site of protein attachment. These findings lend direct visual support for the kinking hypothesis based on the observation of anomalous electrophoretic mobility of DNA fragments containing specifically bound cAMP receptor protein.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011953 Receptors, Cyclic AMP Cell surface proteins that bind cyclic AMP with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized cyclic AMP receptors are those of the slime mold Dictyostelium discoideum. The transcription regulator CYCLIC AMP RECEPTOR PROTEIN of prokaryotes is not included nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Cyclic AMP Receptors,cAMP Receptors,Cyclic AMP Receptor,Receptors, cAMP,cAMP Receptor,Receptor, Cyclic AMP,Receptor, cAMP
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
January 1999, Methods in molecular biology (Clifton, N.J.),
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
January 2012, DNA repair,
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
June 2000, Molecular biotechnology,
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
January 2003, Methods in enzymology,
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
August 1986, Cell,
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
January 1978, Methods in cell biology,
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
December 1989, Journal of molecular biology,
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
February 1982, Die Naturwissenschaften,
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
January 1994, Methods in molecular biology (Clifton, N.J.),
A M Gronenborn, and M V Nermut, and P Eason, and G M Clore
August 1980, Veterinary immunology and immunopathology,
Copied contents to your clipboard!