Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site. 1984

C A Omer, and S N Cohen

We present data showing that the SLP1 plasmids found in Streptomyces lividans after mating with S. coelicolor strain A3(2) originate as deletion mutants of a 17 kb segment of the S. coelicolor chromosome. Excision of the entire 17 kb segment yields a transiently existing plasmid containing a site for integration into the chromosome of recipient SLP1- S. lividans strains at a unique locus that corresponds to the original chromosomal location of SLP1 in S. coelicolor. The deletion mutants of SLP1 lack the attachment site and/or other regions required for its integration, and thus persist in the recipient as autonomously replicating plasmids. Plasmids that contain the complete 17 kb sequence of the chromosomally integrated SLP1 segment were constructed in vitro by circularization of restriction endonuclease-generated fragments of chromosomal DNA carrying a tandemly-duplicated integrant of SLP1. Transformation of an SLP1- S. lividans strain with such plasmids results in chromosomal integration of the SLP1 sequence at the same site at which it is integrated in S. lividans cells that acquire the sequence by mating with S. coelicolor. A model for the site-specific excision and integration of SLP1 is presented.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012093 Replicon Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Replication Unit,Replication Units,Replicons,Unit, Replication,Units, Replication
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

C A Omer, and S N Cohen
October 1991, Molecular microbiology,
C A Omer, and S N Cohen
March 2003, Molecular microbiology,
C A Omer, and S N Cohen
April 2010, Nucleic acids research,
Copied contents to your clipboard!