Tn501 insertion mutagenesis in Pseudomonas aeruginosa PAO. 1984

M Tsuda, and S Harayama, and T Iino

Transposon insertion mutagenesis of the Pseudomonas aeruginosa PAO chromosome with Tn1 and Tn501 was carried out using a mutant plasmid of R68::Tn501 temperature-sensitive for replication and maintenance. This method consists of three steps. Firstly, the temperature-independent, drug-resistant clones were selected from the strain carrying this plasmid. In the temperature-independent clones, the plasmid was integrated into the chromosome by Tn1- or Tn501-mediated cointegrate formation. Secondly, such clones were cultivated at a permissive temperature to provoke the excision of the integrated plasmid from the chromosome. Excision occurred by the reciprocal recombination between the two copies of Tn1 or Tn501 flanking the integrated plasmid, leaving one Tn1 or Tn501 insertion on the chromosome. Thirdly, the excised plasmid was cured by cultivating these isolates at a non-permissive temperature without selection for the drug resistance. Using this method, we isolated 1 Tn1-induced and 43 Tn501-induced auxotrophic mutations in this organism. Genetic mapping allowed us to identify two new genes, pur-8001 and met-8003. The Tn501-induced auxotrophic mutations were distributed non-randomly among auxotrophic genes, and the reversion of the mutations by precise excision of the Tn501 insertion occurred very rarely.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic

Related Publications

M Tsuda, and S Harayama, and T Iino
May 1991, Journal of general microbiology,
M Tsuda, and S Harayama, and T Iino
March 1986, Molecular & general genetics : MGG,
M Tsuda, and S Harayama, and T Iino
October 1982, Journal of bacteriology,
M Tsuda, and S Harayama, and T Iino
April 1979, Plasmid,
M Tsuda, and S Harayama, and T Iino
November 1994, Microbiology (Reading, England),
M Tsuda, and S Harayama, and T Iino
September 1995, Journal of bacteriology,
M Tsuda, and S Harayama, and T Iino
October 1993, Molecular microbiology,
M Tsuda, and S Harayama, and T Iino
October 1993, Molecular microbiology,
M Tsuda, and S Harayama, and T Iino
January 1986, Acta microbiologica Polonica,
M Tsuda, and S Harayama, and T Iino
September 1990, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!