Blockade of autocrine stimulation in simian sarcoma virus-transformed cells reverses down-regulation of platelet-derived growth factor receptors. 1984

J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams

The viral (v)-sis oncogene encodes a protein (p28sis) that is structurally homologous to platelet-derived growth factor (PDGF). We have shown that simian sarcoma virus (SSV)-transformed cells containing the v-sis oncogene release a Mr 20,000 substance that is recognized by antisera to synthetic peptide sequences contained in p28sis. Medium conditioned by SSV-transformed cells competes with 125I-labeled PDGF for specific PDGF receptor sites, initiates DNA synthesis, and stimulates tyrosine phosphorylation of the PDGF receptor when added to normal cells. When normal cells are co-cultured with SSV-transformed cells, the PDGF receptors of the normal cells are down-regulated by factors released from the transformed cells. Thus, SSV-transformed cells release material that is functionally similar to PDGF. We have used anti-phosphotyrosine antibodies to purify PDGF receptors and to detect PDGF-stimulated receptors in normal cells. SSV-transformed cells have no PDGF receptors detectable by these antibodies or by 125I-labeled PDGF binding studies. However, when SSV-transformed cells are exposed to suramin, a compound that blocks binding of PDGF to its receptors, the receptors reappear on the cell surface and within 8 hr are present at the same levels as in control cells. These "new" receptor sites can be phosphorylated in response to PDGF. Thus, the absence of PDGF receptors in SSV-transformed cells is due to down-regulation of the receptors by an autocrine mechanism that can be blocked by suramin.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic

Related Publications

J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
July 1984, Science (New York, N.Y.),
J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
September 1983, Science (New York, N.Y.),
J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
November 1984, Cell,
J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
May 1996, Journal of neurosurgery,
J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
April 1987, Proceedings of the National Academy of Sciences of the United States of America,
J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
January 1985, Nature,
J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
November 1982, Biochemical and biophysical research communications,
J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
February 2000, International journal of cancer,
J S Garrett, and S R Coughlin, and H L Niman, and P M Tremble, and G M Giels, and L T Williams
July 1984, Virology,
Copied contents to your clipboard!