Myasthenia gravis and myasthenic syndromes. 1984

A G Engel

More than a decade ago myasthenic symptoms were observed in rabbits immunized with acetylcholine receptor (AChR) [119] and AChR deficiency was found at the neuromuscular junction in human myasthenia gravis (MG) [36]. By 1977 the autoimmune character of MG and the pathogenic role of AChR antibodies had been established by several measures. These included the demonstration of circulating AChR antibodies in nearly 90% of patients with MG [87], passive transfer with IgG of several features of the disease from human to mouse [149], localization of immune complexes (IgG and complement) on the postsynaptic membrane [30], and the beneficial effects of plasmapheresis [20, 123]. Substantial subsequent progress has occurred in understanding the structure and function of AChR and its interaction with AChR antibodies. The relationships of the concentration, specificities, and functional properties of the antibodies to the clinical state in MG have been carefully analyzed, and the mechanisms by which AChR antibodies impair neuromuscular transmission have been further investigated. The clinical classification of MG has been refined, the role of the thymus gland in the disease has been further clarified, and new information has become available on transient neonatal MG. The prognosis for generalized MG is improving, but there is still no consensus on its optimal management. Novel therapeutic approaches to MG are now being explored in animal models. Recognition of the autoimmune origin of acquired MG also implied that myasthenic disorders occurring in a genetic or congenital setting had a different cause. As a result, a number of congenital myasthenic syndromes have come to be recognized and investigated. Finally, an acquired disorder of neuromuscular transmission different from MG, the Lambert-Eaton myasthenic syndrome, has also been shown to have an autoimmune basis. In this syndrome, active zone particles of the presynaptic membrane are direct or indirect targets of the pathogenic autoantibodies.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009135 Muscular Diseases Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE. Muscle Disorders,Myopathies,Myopathic Conditions,Muscle Disorder,Muscular Disease,Myopathic Condition,Myopathy
D009157 Myasthenia Gravis A disorder of neuromuscular transmission characterized by fatigable weakness of cranial and skeletal muscles with elevated titers of ACETYLCHOLINE RECEPTORS or muscle-specific receptor tyrosine kinase (MuSK) autoantibodies. Clinical manifestations may include ocular muscle weakness (fluctuating, asymmetric, external ophthalmoplegia; diplopia; ptosis; and weakness of eye closure) and extraocular fatigable weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles (ocular myasthenia). THYMOMA is commonly associated with this condition. Anti-MuSK Myasthenia Gravis,MuSK MG,MuSK Myasthenia Gravis,Muscle-Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Generalized,Myasthenia Gravis, Ocular,Anti MuSK Myasthenia Gravis,Generalized Myasthenia Gravis,Muscle Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Anti-MuSK,Myasthenia Gravis, MuSK,Ocular Myasthenia Gravis
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A G Engel
August 2009, Zeitschrift fur Rheumatologie,
A G Engel
October 1992, Current opinion in neurology and neurosurgery,
A G Engel
January 2023, Handbook of clinical neurology,
A G Engel
December 2019, Continuum (Minneapolis, Minn.),
A G Engel
May 2013, Ideggyogyaszati szemle,
A G Engel
January 1990, Revista chilena de pediatria,
A G Engel
January 1971, Acta neurologica Scandinavica,
A G Engel
December 2014, The Cochrane database of systematic reviews,
A G Engel
October 2003, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
Copied contents to your clipboard!