Inhibition of [3H]GABA binding to rat brain synaptic membranes by bicuculline related alkaloids. 1984

J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi

The binding of 45 bicuculline related phthalideisoquinoline alkaloids to the GABAA receptor was studied using rat brain synaptic membranes prepared both in Tris-HCl and in Tyrode buffers. The IC50 values determined in Tyrode for phthalideisoquinolines are lower (by about one order of magnitude) than and correlate well (r2 = 0.95) with the IC50 data obtained by [3H]GABA displacement in Tris-HCl. Applying Tyrode, the activities of GABA agonists relative to Tris-HCl are decreased. It can be recognized that activities in receptor binding are dependent on the conformations phthalideisoquinolines prefer in solution. On the basis of systematic alterations in the phthalideisoquinoline molecule the main structural elements involved in the binding of phthalideisoquinoline alkaloids appear to be identical with those of GABA agonists, suggesting that the same binding conformation of the GABAA receptor may be implicated for both agonists and antagonists. The opposite shift in relative potencies of agonists and antagonists may be the consequence of an alteration in the "ionic status" rather than that in the conformation of the GABAA receptor.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
March 1979, Journal of neurochemistry,
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
April 1982, Journal of neurochemistry,
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
January 1999, Methods in molecular biology (Clifton, N.J.),
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
November 1980, Neuropharmacology,
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
March 1981, Nature,
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
May 1987, The American journal of physiology,
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
July 1982, Journal of neurochemistry,
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
October 1981, Journal of neurochemistry,
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
May 1977, Nature,
J Kardos, and G Blaskó, and P Kerekes, and I Kovács, and M Simonyi
February 1990, European journal of pharmacology,
Copied contents to your clipboard!