Studies on glucose-induced inactivation of gluconeogenetic enzymes in adenylate cyclase and cAMP-dependent protein kinase yeast mutants. 1984

P Tortora, and N Burlini, and G Caspani, and A Guerritore

Glucose-induced inactivation of the gluconeogenetic enzymes fructose-1,6-biphosphatase, cytoplasmic malate dehydrogenase and phosphoenolpyruvate carboxykinase was tested in yeast mutants defective in adenylate cyclase (cyr1 mutation) and in the cAMP-binding subunit of cAMP-dependent protein kinase (bcy 1 mutation). In the mutant AM7-11D (cyr1 mutation), glucose-induced cAMP overshoot was absent, and no significant inactivation of the gluconeogenetic enzymes was detected, thus supporting the role of cAMP in the process. Moreover, in the mutant AM9-8B (bcy1 mutation), no cAMP-dependent protein kinase activity was evidenced, and, in addition, a normal inactivation pattern was observed, thus indicating that other mechanisms evoked by glucose might be required in the process. In the double mutant AM7-11DR-4 (cyr1 bcy1 mutations), no inactivating effect was triggered by the sugar: this suggests that cAMP exerts some additional effect on the process, besides the activation of cAMP-dependent protein kinase. Furthermore, in AM7-11D, extracellular cAMP triggered about 50% of inactivation of fructose-1,6-bisphosphatase; this effect was largely reversed in acetate medium plus cycloheximide even after 150 min of incubation. However, an extensive and essentially irreversible inactivation was evidenced in the presence of glucose plus cAMP, whereas glucose alone was only slightly effective. Therefore, the reversible effect of cAMP, which probably corresponds to enzyme phosphorylation, seems to be required for the irreversible, probably proteolytic, glucose-stimulated inactivation of this enzyme. Cytoplasmic malate dehydrogenase and phosphoenolpyruvate carboxykinase in AM7-11D were also inactivated by cAMP, and much more by glucose plus cAMP, whereas glucose was practically ineffective. However, reversibility of the effect was not detected, and, in addition, no phosphorylation of phosphoenolpyruvate carboxykinase could be evidenced. Therefore, the sugar quite probably stimulates proteolysis of these enzymes, but the mechanism of cAMP in their degradation has still to be defined.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006597 Fructose-Bisphosphatase An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11. Fructose-1,6-Bisphosphatase,Fructose-1,6-Diphosphatase,Fructosediphosphatase,Hexosediphosphatase,D-Fructose-1,6-Bisphosphate 1-Phosphohydrolase,FDPase,Fructose-1,6-Biphosphatase,1-Phosphohydrolase, D-Fructose-1,6-Bisphosphate,D Fructose 1,6 Bisphosphate 1 Phosphohydrolase,Fructose 1,6 Biphosphatase,Fructose 1,6 Bisphosphatase,Fructose 1,6 Diphosphatase,Fructose Bisphosphatase
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

P Tortora, and N Burlini, and G Caspani, and A Guerritore
April 1982, Proceedings of the National Academy of Sciences of the United States of America,
P Tortora, and N Burlini, and G Caspani, and A Guerritore
February 1983, Cell,
P Tortora, and N Burlini, and G Caspani, and A Guerritore
June 1983, Experimental cell research,
P Tortora, and N Burlini, and G Caspani, and A Guerritore
January 2001, Ukrains'kyi biokhimichnyi zhurnal (1999 ),
P Tortora, and N Burlini, and G Caspani, and A Guerritore
July 1993, Cellular signalling,
P Tortora, and N Burlini, and G Caspani, and A Guerritore
June 1991, The Journal of parasitology,
P Tortora, and N Burlini, and G Caspani, and A Guerritore
March 1985, Biokhimiia (Moscow, Russia),
P Tortora, and N Burlini, and G Caspani, and A Guerritore
August 2005, FEBS letters,
P Tortora, and N Burlini, and G Caspani, and A Guerritore
January 1987, Zeitschrift fur Naturforschung. C, Journal of biosciences,
Copied contents to your clipboard!