Neurospecificity in the cricket cercal system. 1984

R K Murphey, and W W Walthall, and G A Jacobs

Studies of neurospecificity in the cricket cercal sensory system are reviewed and a decade of experimentation is examined in the light of recently obtained anatomical data. The nearly complete description of the anatomy indicates that the excitatory receptive fields of directionally-selective interneurones are a joint function of an orderly afferent projection and the dendritic structure of the first order interneurones. The detailed understanding of the anatomy is shown to be a powerful tool in the interpretation of previously published physiological experiments and the design of new ones. The mechanisms which shape the orderly afferent projection are then described and compared with the work on vertebrate sensory systems. It is concluded that both positional interactions of the type conceived by Sperry (1963) and competitive interactions of the type conceived by Hubel, Wiesel & LeVay (1977) are involved in producing the cercal afferent projection. Thus the two main components of the neurospecificity concept are shown to exist in the cricket nervous system. The limits of a purely anatomical approach to the study of neurospecificity are considered in light of the work on this cricket sensory system.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009987 Orthoptera An order of insects comprising two suborders: Caelifera and Ensifera. They consist of GRASSHOPPERS, locusts, and crickets (GRYLLIDAE). Caelifera,Ensifera,Caeliferas,Ensiferas,Orthopteras
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

R K Murphey, and W W Walthall, and G A Jacobs
April 2010, Journal of neurophysiology,
R K Murphey, and W W Walthall, and G A Jacobs
December 1991, The Anatomical record,
R K Murphey, and W W Walthall, and G A Jacobs
March 1998, Journal of neurophysiology,
R K Murphey, and W W Walthall, and G A Jacobs
January 1976, Biofizika,
R K Murphey, and W W Walthall, and G A Jacobs
January 1990, Journal of neurobiology,
R K Murphey, and W W Walthall, and G A Jacobs
January 1970, Biofizika,
R K Murphey, and W W Walthall, and G A Jacobs
March 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R K Murphey, and W W Walthall, and G A Jacobs
January 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R K Murphey, and W W Walthall, and G A Jacobs
March 1996, Nature,
R K Murphey, and W W Walthall, and G A Jacobs
June 1966, Nature,
Copied contents to your clipboard!