Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. 1984

T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson

Leukocyte surface glycoproteins that share a common beta subunit have been found to be congenitally deficient in three unrelated patients with recurring bacterial infection. The glycoproteins, Mac-1, LFA-1, and p150,95, have the subunit compositions alpha M beta, alpha L beta, and alpha X beta, respectively. Using subunit-specific monoclonal antibodies, both the alpha M and beta subunits of Mac-1, the alpha L and beta subunits of LFA-1, and at the least the beta subunit of p150,95, were found to be deficient at the cell surface by the techniques of immunofluorescence flow cytometry, radioimmunoassay, and immunoprecipitation. A latent pool of Mac-1 that can be expressed on granulocyte surfaces in response to secretory stimuli, such as f-Met-Leu-Phe, was also lacking in patients. Deficiency was found on all leukocytes tested, including granulocytes, monocytes, and T and B lymphocytes. Quantitation by immunofluorescence cytometry of subunits on granulocytes from parents of these patients and of a fourth deceased patient showed approximately half-normal surface expression, and, together with data on other siblings and a family with an affected father and children, demonstrate autosomal recessive inheritance. Deficiency appears to be quantitative rather than qualitative, with two patients expressing approximately 0.5% and one patient approximately 5% of normal amounts. The latter patient had alpha beta complexes on the cell surface detectable by immunoprecipitation. Biosynthesis experiments showed the presence of normal amounts of alpha'L intracellular precursor in lymphoid lines of all three patients. Together with surface deficiency of three molecules that share a common beta subunit but have differing alpha subunits, this suggests the primary deficiency is of the beta subunit. The lack of maturation of alpha'L to alpha L and the deficiency of the alpha subunits at the cell surface and in latent pools suggests that association with the beta subunit is required for alpha subunit processing and transport to the cell surface or to latent pools. The molecular basis of this disease is discussed in light of adhesion-related functional abnormalities in patients' leukocytes and the blockade of similar functions in healthy cells by monoclonal antibodies.

UI MeSH Term Description Entries
D007153 Immunologic Deficiency Syndromes Syndromes in which there is a deficiency or defect in the mechanisms of immunity, either cellular or humoral. Antibody Deficiency Syndrome,Deficiency Syndrome, Immunologic,Deficiency Syndromes, Antibody,Deficiency Syndromes, Immunologic,Immunologic Deficiency Syndrome,Immunological Deficiency Syndromes,Antibody Deficiency Syndromes,Deficiency Syndrome, Antibody,Deficiency Syndrome, Immunological,Deficiency Syndromes, Immunological,Immunological Deficiency Syndrome,Syndrome, Antibody Deficiency,Syndrome, Immunologic Deficiency,Syndrome, Immunological Deficiency,Syndromes, Antibody Deficiency,Syndromes, Immunologic Deficiency,Syndromes, Immunological Deficiency
D007223 Infant A child between 1 and 23 months of age. Infants
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell

Related Publications

T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
July 1985, Federation proceedings,
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
January 1987, Annual review of medicine,
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
November 1986, Journal of immunology (Baltimore, Md. : 1950),
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
January 1986, Journal of immunology (Baltimore, Md. : 1950),
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
February 1985, Biochemical Society transactions,
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
February 1986, Journal of leukocyte biology,
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
July 1987, Cell,
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
February 1989, The Journal of clinical investigation,
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
June 1987, Journal of periodontology,
T A Springer, and W S Thompson, and L J Miller, and F C Schmalstieg, and D C Anderson
July 1985, Federation proceedings,
Copied contents to your clipboard!