Acetylcholine receptor channel properties during development of Xenopus muscle cells in culture. 1984

P Brehm, and Y Kidokoro, and F Moody-Corbett

Developmental changes in acetylcholine (ACh) receptor channel function on aneural cultures of embryonic myotomal muscle cells were examined using the patch-clamp technique. At all stages of differentiation two different unitary-event amplitudes were observed, corresponding to high-gamma (single-channel conductance) (64 pS) and low-gamma (46 pS) channel types. No change in conductance occurred for either channel type during the 6-day in vitro period examined. At resting membrane potential (-85 mV) the low-gamma channel exhibited a mean open time of approximately 2 ms which, on the average, was 2-3-fold longer than that measured for the high-gamma channel. Neither the estimated mean channel open time nor the voltage dependence of the open state measured for either channel type changed during development. In recordings with low ACh concentration (0.1-0.25 microM) both high-gamma and low-gamma channel types exhibited non-stationary opening probabilities over the recording period. Usually the opening rate of both channel types decreased with time following seal formation, however, the 'drop-out' rate was faster for the low-gamma channel. A developmental increase in the proportion of high-gamma events occurred between day 1 (16%) and day 5 (56%) in culture, paralleling the time-dependent changes in the channel kinetics based on ACh-activated membrane noise. We conclude that the development of non-junctional muscle membrane is associated with increased expression of high-gamma channels and that this process is primarily responsible for the previously reported developmental alterations in macroscopic ACh receptor channel currents.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

P Brehm, and Y Kidokoro, and F Moody-Corbett
September 1988, Developmental biology,
P Brehm, and Y Kidokoro, and F Moody-Corbett
March 1996, Journal of neurobiology,
P Brehm, and Y Kidokoro, and F Moody-Corbett
January 1993, Brain research. Developmental brain research,
P Brehm, and Y Kidokoro, and F Moody-Corbett
May 1982, Developmental biology,
P Brehm, and Y Kidokoro, and F Moody-Corbett
August 1987, The Journal of physiology,
P Brehm, and Y Kidokoro, and F Moody-Corbett
June 1991, Brain research. Molecular brain research,
P Brehm, and Y Kidokoro, and F Moody-Corbett
October 1984, Science (New York, N.Y.),
P Brehm, and Y Kidokoro, and F Moody-Corbett
March 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!