Patch-clamp study of the tetrodotoxin-resistant sodium current in group C sensory neurones. 1984

J L Bossu, and A Feltz

Conditions were devised to isolate in cranial sensory neurones transfer of Na ions: K and Ca were omitted from the extracellular medium, and simultaneously cells were intracellularly loaded with 120 mM caesium and 20 mM TEA at [Ca]i = 10(-8) M. A tetrodotoxin (TTX)-resistant current was shown to be elicited by step depolarization from -25 MV upwards. This current successively activates and inactivates at increasing rates on further depolarization and at 0 mV (where peak amplitude is reached) its time course is of 20-50 ms. Absence of TTX-sensitivity (up to 15 microM), slow time course and an activation curve shifted by 15 mV towards the depolarized potentials differentiate this current from the more classical fast Na current which can be elicited on the same cells. Inactivation was provoked by a prepulse of varying amplitude and duration: with a prepulse command to -20 mV, inactivation was of 50% within a delay of 300 ms and almost 100% in about 1 min. After complete inactivation by command to 0 mV for 300 ms, recovery by holding the potential at -80 mV was of 50% in 205 ms, and of 100% after 1-4 s. It is concluded that a charge transfer of Na accounts for most of the hump which prolongs the action potential of these sensory neurones, and thus it can be proposed that spike duration as modulated by neurotransmitters may also involve Na in addition to Ca.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009620 Nodose Ganglion The inferior (caudal) ganglion of the vagus (10th cranial) nerve. The unipolar nodose ganglion cells are sensory cells with central projections to the medulla and peripheral processes traveling in various branches of the vagus nerve. Nodose Ganglia,Ganglia, Nodose,Ganglion, Nodose
D003391 Cranial Nerves Twelve pairs of nerves that carry general afferent, visceral afferent, special afferent, somatic efferent, and autonomic efferent fibers. Cranial Nerve,Nerve, Cranial,Nerves, Cranial
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture

Related Publications

J L Bossu, and A Feltz
October 1998, Neuroscience letters,
J L Bossu, and A Feltz
December 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!