Characterization of recognition sites on bacteriophage HP1c1 DNA which interact with the DNA uptake system of Haemophilus influenzae Rd. 1984

W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca

The 32.4-kb genome of the Haemophilus influenzae bacteriophage HP1c1 contains at least twelve sites, each conferring high affinity for the DNA uptake system of transformable H. influenzae Rd. Five of these high-affinity sites have been located and their nucleotide sequences determined. Three sites contained a contiguous 9-bp sequence identical to the first nine residues of the 11-bp site previously identified as conferring high affinity for the H. influenzae transformation receptor to DNA fragments. The remaining two sites contained complete 11-bp sequences. In contrast, an HP1c1 restriction fragment containing a sequence identical to the final nine residues of the 11-bp uptake site exhibits only a low affinity for the DNA uptake system. An 8-bp sequence consisting of the first eight residues of the 11-bp site was 1% as active as the longer, high-affinity sites. Thus the first 9-bp of the 11-bp site are sufficient to direct high-affinity uptake, while the first 8-bp or the distal 9-bp are not. These results provide an initial assessment of the relative contributions of the individual residues constituting the 11-bp site to the apparent affinity of DNA fragments for the receptor of Haemophilus transformation.

UI MeSH Term Description Entries
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006193 Haemophilus influenzae A species of HAEMOPHILUS found on the mucous membranes of humans and a variety of animals. The species is further divided into biotypes I through VIII. Bacterium influenzae,Coccobacillus pfeifferi,Haemophilus meningitidis,Hemophilus influenzae,Influenza-bacillus,Mycobacterium influenzae
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic

Related Publications

W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca
September 1983, Gene,
W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca
January 1986, Journal of bacteriology,
W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca
August 1975, Molecular & general genetics : MGG,
W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca
February 1998, Journal of bacteriology,
W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca
January 1980, Acta microbiologica Polonica,
W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca
January 1982, Zeitschrift fur allgemeine Mikrobiologie,
W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca
July 1995, Science (New York, N.Y.),
W P Fitzmaurice, and R C Benjamin, and P C Huang, and J J Scocca
December 1974, Journal of virology,
Copied contents to your clipboard!