Guanethidine-sensitive release of neuropeptide Y-like immunoreactivity in the cat spleen by sympathetic nerve stimulation. 1984

J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow

Splenic nerve stimulation (10 Hz for 2 min) caused a perfusion-pressure increase, a volume reduction and an increase in the output of neuropeptide Y-like immunoreactivity (NPY-LI) from the isolated blood-perfused cat spleen. Gel-filtration HPLC analysis revealed that plasma NPY-LI collected during nerve stimulation was similar to the NPY-LI in the spleen and synthetic porcine NPY. Combined propranolol and phenoxybenzamine pretreatment enhanced NPY output upon nerve stimulation by about 60%. Forty percent of the perfusion-pressure increase and 25% of the volume reduction seen during control stimulations remained after adrenoceptor blockade. Guanethidine abolished the release of NPY-LI, the perfusion-pressure increase and the volume reduction normally seen upon splenic nerve stimulation. Infusion of synthetic porcine NPY caused a long-lasting increase in perfusion pressure and a relatively moderate volume reduction. Noradrenaline (NA) both increased perfusion pressure and induced a marked volume reduction. The NPY effects were resistant to adrenoceptor antagonists in doses which abolished the NA response. In conclusion, the present data show that NPY-LI is released upon sympathetic nerve stimulation by a guanethidine-sensitive mechanism. Furthermore, the sympathetic response is partially resistant to adrenoceptor antagonists and NPY has powerful vasoconstrictor effects. This provides further evidence for a role of NPY in sympathetic vascular control.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006145 Guanethidine An antihypertensive agent that acts by inhibiting selectively transmission in post-ganglionic adrenergic nerves. It is believed to act mainly by preventing the release of norepinephrine at nerve endings and causes depletion of norepinephrine in peripheral sympathetic nerve terminals as well as in tissues. ((2-Hexahydro-1(2H)-azocinyl)ethyl)guanidine,Guanethidine Monosulfate,Guanethidine Sulfate,Guanethidine Sulfate (1:1),Guanethidine Sulfate (1:2),Guanethidine Sulfate (2:1),Guanethidine Sulfate (2:1), 14C-Labeled,Ismelin,Isobarin,Octadine,Oktadin,Monosulfate, Guanethidine,Sulfate, Guanethidine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D014666 Vasomotor System The neural systems which act on VASCULAR SMOOTH MUSCLE to control blood vessel diameter. The major neural control is through the sympathetic nervous system. System, Vasomotor,Systems, Vasomotor,Vasomotor Systems

Related Publications

J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
January 1987, Peptides,
J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
November 1966, The Journal of pharmacy and pharmacology,
J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
June 1968, The Journal of pharmacology and experimental therapeutics,
J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
November 1987, Journal of the autonomic nervous system,
J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
March 1989, Journal of molecular and cellular cardiology,
J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
May 1994, The American journal of physiology,
J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
November 1986, European journal of pharmacology,
J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
September 1989, Brain research bulletin,
J M Lundberg, and A Anggård, and E Theodorsson-Norheim, and J Pernow
May 1991, Acta physiologica Scandinavica,
Copied contents to your clipboard!