Nonequilibration of membrane-associated protons with the internal aqueous space in dark-maintained chloroplast thylakoids. 1984

J A Laszlo, and G M Baker, and R A Dilley

Isolated spinach thylakoids retain a slowly equilibrating pool of protons in the dark which are predominantly bound to buffering groups, probably amines, with low pKa values. We have measured the effects of permeant buffers, salts, sucrose, and uncouplers on the retention of the proton pool. Acetic anhydride, which reacts with neutral primary amine groups, was used to determine the protonation state of the amine buffering groups. It was previously shown by Baker et al. that the extent of inhibition of photosystem II water-oxidizing capacity by acetic anhydride and the increase in derivatization by the anhydride are proportional to, and dependent on, the deprotonated state of the amine buffering pool. Therefore, acetic anhydride inhibition of water oxidation activity may be used as a measure of the protonation state of the amine buffering pool. By this method it is inferred that protons, in a metastable state, were retained by membranes suspended in high pH buffer for several hours in the dark. When both the internal and external aqueous phases were equilibrated with pH 8.8 buffer, the proton pool was released only upon addition of a protonophore. The osmotic strength of the suspension buffer affected uncoupler-induced proton release while ionic strength had little influence. The acetic anhydride-sensitive buffering group(s) of the water-oxidizing apparatus had an apparent pKa of 7.8. We conclude that an array of protein buffering groups reside either within the membrane matrix, or in proteins at the membrane surface, not in equilibrium with the bulk aqueous phases, and is responsible for the retention of the proton pool in dark maintained chloroplasts.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003624 Darkness The absence of light. Darknesses
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000089 Acetic Anhydrides Compounds used extensively as acetylation, oxidation and dehydrating agents and in the modification of proteins and enzymes. Anhydrides, Acetic
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

J A Laszlo, and G M Baker, and R A Dilley
June 1984, Journal of bioenergetics and biomembranes,
J A Laszlo, and G M Baker, and R A Dilley
August 1980, Biochimica et biophysica acta,
J A Laszlo, and G M Baker, and R A Dilley
October 1978, Biochimica et biophysica acta,
J A Laszlo, and G M Baker, and R A Dilley
April 1979, Archives of biochemistry and biophysics,
J A Laszlo, and G M Baker, and R A Dilley
January 1989, Annals of the New York Academy of Sciences,
J A Laszlo, and G M Baker, and R A Dilley
August 1975, Biochimica et biophysica acta,
J A Laszlo, and G M Baker, and R A Dilley
November 2006, Biochimica et biophysica acta,
J A Laszlo, and G M Baker, and R A Dilley
May 1976, Plant physiology,
J A Laszlo, and G M Baker, and R A Dilley
December 1988, Archives of biochemistry and biophysics,
Copied contents to your clipboard!