Scanning electron microscopic observations on the inner ear of the skate, Raja ocellata. 1980

V C Barber, and C J Emerson

The inner ear of the skate, Raja ocellata, was examined by scanning electron microscopy. The otolithic membranes have a gelatinous component and an endogenous class of otoconia. Cupulae are reticulate in form. The morphology and polarization of sensory cell hair bundles are described for the various regions of the labyrinth, and are compared with published observations on other species. In the otolithic maculae, the more centrally located receptor cells generally have longer sterecolia than the peripheral cells. The hair bundles of the lacinia are similar to those of the central portion of the sacculus and differed from those of the rest of the utricular macula. Hair bundles in the peripheral regions of all maculae and cristae are similar. The polarization pattern of the utriculus is similar to that of teleosts, while that of the lagena is less clearly dichotomized. The receptor cells of most of the sacculus are oriented in a bivertical direction, with cells in the anterior portion, and a few in the posterior region, being aligned longitudinally. The significance of morphology and polarization with respect to the functions of the otolithic organs is discussed. The relationship of cell processes of the ampullary receptors to the cupula is briefly considered.

UI MeSH Term Description Entries
D007758 Ear, Inner The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions. Labyrinth,Bony Labyrinth,Ear, Internal,Inner Ear,Membranous Labyrinth,Bony Labyrinths,Ears, Inner,Ears, Internal,Inner Ears,Internal Ear,Internal Ears,Labyrinth, Bony,Labyrinth, Membranous,Labyrinths,Labyrinths, Bony,Labyrinths, Membranous,Membranous Labyrinths
D008267 Acoustic Maculae The sensory areas on the vertical wall of the saccule and in the floor of the utricle. The hair cells in the maculae are innervated by fibers of the VESTIBULAR NERVE. Maculae, Acoustic,Macula, Acoustic,Acoustic Macula,Acoustic Maculas,Maculas, Acoustic
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012444 Saccule and Utricle Two membranous sacs within the vestibular labyrinth of the INNER EAR. The saccule communicates with COCHLEAR DUCT through the ductus reuniens, and communicates with utricle through the utriculosaccular duct from which the ENDOLYMPHATIC DUCT arises. The utricle and saccule have sensory areas (acoustic maculae) which are innervated by the VESTIBULAR NERVE. Otolithic Organs,Utricle,Saccule,Organ, Otolithic,Otolithic Organ,Saccules,Utricle and Saccule,Utricles

Related Publications

V C Barber, and C J Emerson
September 1987, Scanning microscopy,
V C Barber, and C J Emerson
January 1973, Revue de laryngologie - otologie - rhinologie,
V C Barber, and C J Emerson
December 1985, International journal of oral surgery,
V C Barber, and C J Emerson
January 1991, Acta oto-laryngologica. Supplementum,
V C Barber, and C J Emerson
January 1992, Zhonghua er bi yan hou ke za zhi,
V C Barber, and C J Emerson
January 1985, Acta oto-laryngologica. Supplementum,
V C Barber, and C J Emerson
August 1974, Comparative biochemistry and physiology. B, Comparative biochemistry,
V C Barber, and C J Emerson
January 1990, Respiration physiology,
Copied contents to your clipboard!