The role of calcium in the effects of noradrenaline and phenoxybenzamine on adrenergic transmitter release from atria: no support for negative feedback of release. 1981

S Kalsner

1 The relation of calcium ion influx into nerve terminals to presynaptic adrenoceptor function and the possible masking, by desensitization due to intraneuronal calcium accumulation, of the effects of adrenoceptor agonists and antagonists on presynaptic alpha-adrenoceptors was investigated in guinea-pig atria previously incubated with [(3)H]-noradrenaline.2 Atria were stimulated with 100 pulses at various frequencies (1 to 15 Hz) in standard (2.3 mm), low (0.26 mm) and high (6.9 mm) calcium-Krebs solution in the absence and then the presence first of noradrenaline and subsequently phenoxybenzamine.3 The per pulse overflow of tritium was directly related to the calcium concentration of the Krebs solution, being much reduced and substantially increased in 0.26 and 6.9 mm calcium-Krebs solutions respectively.4 Noradrenaline inhibited the overflow of tritium in low calcium-Krebs solution, to a relatively constant extent, independently of frequency. In addition, the agonist had a greater maximal inhibitory effect in standard than in reduced calcium-Krebs. The catecholamine was as effective an inhibitor of overflow at the lowest and highest frequencies in high as it was in standard calcium-Krebs solution. Phenoxybenzamine invariably increased the tritium overflow but was generally less effective both in low and in high calcium-Krebs solution. The patterns of inhibition and enhancement of stimulation-induced tritium overflow by these two agents do not indicate an intimate relationship between calcium influx and adrenoceptor activation; nor does desensitization appear to be an adequate explanation of the relationship between frequency of stimulation and the intensity of agonist and antagonist effect in the three different calcium concentrations.5 It is concluded that the perineuronal levels of adrenergic transmitter do not establish the magnitudes of effect of exogenous adrenoceptor agonists and antagonists on tritium overflow and that a negative feedback regulation of release by transmitter is exceedingly unlikely under ordinary conditions of neurotransmission.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Kalsner
January 1990, Acta physiologica Hungarica,
S Kalsner
January 1971, Naunyn-Schmiedebergs Archiv fur Pharmakologie,
Copied contents to your clipboard!