Studies on the inhibition by propranolol of some human erythrocyte membrane enzymes and plasma cholinesterase. 1982

M Whittaker, and R J Wicks, and J J Britten

Human erythrocyte acetylcholinesterase and the plasma cholinesterase variants are not only inhibited by propranolol but have been found to show stereospecificity for its isomers. The erythrocyte enzyme has a greater affinity for the L-isomer than either the racemate or the D-isomer. In contrast the plasma cholinesterases have greater specificity for the D-isomer than the other isomer or racemate. The usual enzyme shows greater stereospecificity than the atypical enzyme and these findings present additional evidence that these enzyme variants differ in structure at the catalytic active site. Neither Na+ + K+ -ATPase nor Mg2+-ATPase show stereo-specificity for the isomers of propranolol although both enzymes are inhibited by the drug. The action of the drug on the four enzymes in blood samples obtained from patients having Huntington's disease was found to be identical to those observed on the enzymes in blood samples from healthy controls.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D002802 Cholinesterases Acylcholineacylhydrolase,Cholase,Cholinesterase
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006816 Huntington Disease A familial disorder inherited as an autosomal dominant trait and characterized by the onset of progressive CHOREA and DEMENTIA in the fourth or fifth decade of life. Common initial manifestations include paranoia; poor impulse control; DEPRESSION; HALLUCINATIONS; and DELUSIONS. Eventually intellectual impairment; loss of fine motor control; ATHETOSIS; and diffuse chorea involving axial and limb musculature develops, leading to a vegetative state within 10-15 years of disease onset. The juvenile variant has a more fulminant course including SEIZURES; ATAXIA; dementia; and chorea. (From Adams et al., Principles of Neurology, 6th ed, pp1060-4) Huntington Chorea,Juvenile Huntington Disease,Akinetic-Rigid Variant of Huntington Disease,Chorea, Chronic Progressive Hereditary (Huntington),Chronic Progressive Hereditary Chorea (Huntington),Huntington Chronic Progressive Hereditary Chorea,Huntington Disease, Akinetic-Rigid Variant,Huntington Disease, Juvenile,Huntington Disease, Juvenile-Onset,Huntington Disease, Late Onset,Huntington's Chorea,Huntington's Disease,Juvenile-Onset Huntington Disease,Late-Onset Huntington Disease,Progressive Chorea, Chronic Hereditary (Huntington),Progressive Chorea, Hereditary, Chronic (Huntington),Akinetic Rigid Variant of Huntington Disease,Chorea, Huntington,Chorea, Huntington's,Huntington Disease, Akinetic Rigid Variant,Huntington Disease, Juvenile Onset,Huntington Disease, Late-Onset,Juvenile Onset Huntington Disease,Late Onset Huntington Disease
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

M Whittaker, and R J Wicks, and J J Britten
January 1982, Arzneimittel-Forschung,
M Whittaker, and R J Wicks, and J J Britten
February 1948, The Journal of pharmacology and experimental therapeutics,
M Whittaker, and R J Wicks, and J J Britten
June 1980, Biochimica et biophysica acta,
M Whittaker, and R J Wicks, and J J Britten
February 1978, Blood,
M Whittaker, and R J Wicks, and J J Britten
November 1986, The Journal of pharmacy and pharmacology,
M Whittaker, and R J Wicks, and J J Britten
September 1998, Archives of biochemistry and biophysics,
M Whittaker, and R J Wicks, and J J Britten
June 1980, The Journal of biological chemistry,
M Whittaker, and R J Wicks, and J J Britten
January 1969, Archiv fur Toxikologie,
Copied contents to your clipboard!