Differential effects of insulin on splanchnic and peripheral glucose disposal after an intravenous glucose load in man. 1982

L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito

The present study was designed to investigate the mechanisms by which insulin regulates the disposal of an intravenous glucose load in man. A combined tracer-hepatic vein catheter technique was used to quantitate directly the components of net splanchnic glucose balance (NSGB), i.e., splanchnic glucose uptake and hepatic glucose output, and peripheral (extrasplanchnic) glucose uptake. Four different protocols were performed: (a) intravenous infusion of glucose alone (6.5 mg kg(-1) min(-1)) for 90 min (control group); (b) glucose plus somatostatin (0.6 mg/h) and glucagon (0.8 ng kg(-1) min(-1); (c) glucose plus somatostatin, glucagon, and insulin (0.15 mU kg(-1) min(-1)); and (d) glucose plus somatostatin, glucagon, and insulin (0.4 m U kg(-1) min(-1)). In groups 2-4, arterial blood glucose was raised to comparable levels to those of controls ( approximately 170 mg/dl) by a variable glucose infusion. In the control group, plasma insulin levels reached 40 muU/ml at 90 min. NSGB switched from a net output of 1.71+/-0.13 to a net uptake of 1.5-1.6 mg kg(-1) min(-1) due to a 90-95% suppression of hepatic glucose output (P < 0.01) and a 105-130% elevation of splanchnic glucose uptake (from 0.78+/-0.13 to 1.6-1.8 mg kg(-1) min(-1); P < 0.01). Peripheral glucose uptake rose by 150-160% (P < 0.01). In group 2, plasma insulin fell to <5 muU/ml. Net splanchnic glucose output initially rose twofold but later returned to basal values. This response was entirely accounted for by similar changes in hepatic glucose output since splanchnic glucose uptake remained totally unchanged in spite of hyperglycemia. In contrast, peripheral glucose uptake rose consistently by 100% (P < 0.01) despite insulin deficiency. In an additional group of experiments, glucose metabolism by the forearm muscle tissue was quantitated during identical conditions to those of group 2 (hyperglycemia plus insulin deficiency). Both the arterial-deep venous blood glucose difference and forearm glucose uptake increased markedly by 300-400% (P < 0.05 - <0.01). In group 3, plasma insulin was maintained at near-basal, peripheral levels (12-14 muU/ml). Hepatic glucose output decreased slightly by 35-40% (P < 0.05) while splanchnic glucose uptake remained unchanged. Consequently, the net glucose overproduction seen in group 2 was totally prevented although NSGB still remained as a net output. In group 4, peripheral insulin levels were similar to those of the control group (35-40 muU/ml). The suppression of hepatic glucose output was more pronounced (60-65%) and splanchnic glucose uptake rose consistently by 65% (P < 0.01). Consequently, NSGB did not remain as a net output but eventually switched to a small uptake (0.3 mg kg(-1) min(-1)). Peripheral glucose uptake rose to the same extent as in controls. IT IS CONCLUDED THAT: (a) the suppressive effect of hyperglycemia on hepatic glucose output is strictly dependent on the degree of hepatic insulinization; (b) insulin plays an essential role in promoting splanchnic glucose uptake after an intravenous glucose load whereas hyperglycemia per se is totally unable to activate this process; (c) peripheral glucose uptake is markedly stimulated by hyperglycemia even in the face of insulin deficiency. Direct evidence also demonstrates that the skeletal muscle is involved in this response. Our data, thus, indicate that insulin rather than hyperglycemia regulates splanchnic glucose disposal in man. On the other hand, hyperglycemia per se appears to be an important regulator of glucose disposal by peripheral tissues.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D001775 Blood Circulation The movement of the BLOOD as it is pumped through the CARDIOVASCULAR SYSTEM. Blood Flow,Circulation, Blood,Blood Flows,Flow, Blood
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
July 1983, Diabetes,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
October 1979, The American journal of physiology,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
October 1986, Journal of endocrinological investigation,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
January 1967, Metabolism: clinical and experimental,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
January 1983, Diabetes,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
February 1987, Diabetes,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
March 1976, International journal of clinical pharmacology and biopharmacy,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
December 1978, Metabolism: clinical and experimental,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
January 1979, Journal of endocrinological investigation,
L Saccà, and M Cicala, and B Trimarco, and B Ungaro, and C Vigorito
November 1990, Clinical physiology (Oxford, England),
Copied contents to your clipboard!