Alteration in neuronal-glial metabolism of glutamate by the neurotoxin kainic acid. 1982

B Krespan, and S Berl, and W J Nicklas

The effect of the excitotoxin kainic acid on glutamate and glutamine metabolism was studied in cerebellar slices incubated with D-[2-14C]glucose, [U-14C]gamma-aminobutyric acid, [3H]acetate, [U-14C]glutamate, and [U-14C]glutamine as precursors. Kainic acid (1 mM) strongly inhibited the labeling of glutamine relative to that of glutamate from all precursors except [2-14C]glucose and [U-14C]glutamine. Kainic acid did not inhibit glutamine synthetase directly. The data indicate that in the cerebellum kainic acid inhibits the synthesis of glutamine from the small pool of glutamate that is thought to be associated with glial cells. Kainic acid also markedly stimulated the efflux of glutamate from cerebellar slices and this release was not sensitive to tetrodotoxin. Kainic acid stimulated efflux of both glucose- and acetate-labeled glutamate. In contrast, veratridine released glucose-labeled glutamate preferentially via a tetrodotoxin-sensitive mechanism. Kainic acid did not release [U-14C]glutamate from synaptosomal fractions. These results suggest that the bulk of the glutamate released from cerebellar slices by kainic acid comes from nonsynaptic pools.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid

Related Publications

B Krespan, and S Berl, and W J Nicklas
May 1991, Journal of neuroscience research,
B Krespan, and S Berl, and W J Nicklas
April 1995, Toxicon : official journal of the International Society on Toxinology,
B Krespan, and S Berl, and W J Nicklas
August 1996, Biochemical Society transactions,
B Krespan, and S Berl, and W J Nicklas
October 2008, Synapse (New York, N.Y.),
B Krespan, and S Berl, and W J Nicklas
January 1998, Natural toxins,
B Krespan, and S Berl, and W J Nicklas
June 2007, Journal of anatomy,
B Krespan, and S Berl, and W J Nicklas
December 1981, The Journal of experimental biology,
B Krespan, and S Berl, and W J Nicklas
October 1998, Neuroscience letters,
B Krespan, and S Berl, and W J Nicklas
May 1979, Brain research,
Copied contents to your clipboard!