Role of the kidney in the metabolism of fructose in 60-hour fasted humans. 1982

O Björkman, and P Felig

Arterial (A) and renal venous (RV) concentrations and net splanchnic exchange of glucose, fructose, lactate, pyruvate, glycerol, and alanine were studied in the basal state and during a 135-min intravenous infusion of fructose at 2 mmol/min in healthy subjects after a 60-h fast. After 45 min of the fructose infusion, somatostatin (9 microgram/min) was infused for 60 min to induce hypoglucagonemia. Fructose infusion resulted in a net uptake of this hexose by the kidney as well as the splanchnic bed. Estimated renal uptake of fructose could account for the disposal of 20% of the administered fructose load while splanchnic uptake accounted for 38%. The fructose infusion resulted in a rise in blood glucose of 0.9 mmol/L, a 35% increase in net glucose output from the splanchnic bed, and a consistent net output of glucose from the kidney (A-RV = -0.17 +/- 0.05 mmol/L as compared with 0 +/- 0.03 in the basal state, P less than 0.02). Net glucose release from the kidney could account for 55% of the net renal uptake of fructose. The fructose infusion also resulted in a marked change in renal lactate balance from a net uptake in the basal state (A - RV = 0.05 +/- 0.01 mmol/L) to a net output during fructose administration (A - RV = -0.10 +/- 0.04). Administration of somatostatin resulted in a fall in arterial glucagon levels and a 35% decrease in splanchnic glucose output but failed to alter the arterial-renal venous difference for glucose observed during the fructose infusion. We conclude that in 60-h fasted man: (a) intravenous infusion of fructose results in a net uptake of this hexose by the kidney as well as the liver, (b) this uptake is accompanied by stimulation of renal as well as hepatic glucose production and renal production of lactate, and (c) hypoglucagonemia inhibits splanchnic but not renal glucose output during fructose infusion. These data indicate that the kidney is an important site of fructose disposal and that glucose and lactate are end products of renal fructose metabolism.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005632 Fructose A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Levulose,Apir Levulosa,Fleboplast Levulosa,Levulosa,Levulosa Baxter,Levulosa Braun,Levulosa Grifols,Levulosa Ibys,Levulosa Ife,Levulosa Mein,Levulosado Bieffe Medit,Levulosado Braun,Levulosado Vitulia,Plast Apyr Levulosa Mein,Levulosa, Apir,Levulosa, Fleboplast
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

O Björkman, and P Felig
November 1983, The American journal of physiology,
O Björkman, and P Felig
May 1992, The American journal of physiology,
O Björkman, and P Felig
July 1985, The Journal of clinical investigation,
O Björkman, and P Felig
May 2020, Journal of the American Society of Nephrology : JASN,
O Björkman, and P Felig
August 1993, Clinical nutrition (Edinburgh, Scotland),
O Björkman, and P Felig
January 1975, Enzyme,
O Björkman, and P Felig
October 2000, American journal of physiology. Endocrinology and metabolism,
O Björkman, and P Felig
May 2015, Hormone molecular biology and clinical investigation,
O Björkman, and P Felig
November 1981, Archives of biochemistry and biophysics,
O Björkman, and P Felig
August 1991, Biochimica et biophysica acta,
Copied contents to your clipboard!