Review of cimetidine drug interactions. 1983

E M Sorkin, and D L Darvey

The literature on cimetidine drug interactions has been thoroughly reviewed. Several different mechanisms have been proposed for cimetidine-related drug interactions. These mechanisms include: (1) impaired hepatic drug metabolism due to inhibition of hepatic microsomal enzymes, (2) reduced hepatic blood flow, resulting in decreased clearance of drugs that are highly extracted by the liver, (3) increased potential for myelosuppression when administered concurrently with other drugs capable of causing myelosuppression, and (4) altered bioavailability of acid-labile drugs. Cimetidine binds reversibly to the hepatic cytochrome P-450 and P-448 systems, resulting in decreased metabolism of drugs that undergo Phase I reactions (e.g., dealkylation and hydroxylation). In contrast, glucuronidation pathways are unaffected. The rapid onset and reversal of cimetidine's inhibition of hepatic metabolism indicates an effect on hepatic enzyme systems. Cimetidine also has been reported to decrease hepatic blood flow. Drugs that are highly extracted by the liver, such as propranolol, lidocaine, and morphine, may be postulated to have a decreased hepatic clearance. Cimetidine, through its effect on gastric pH, may increase the absorption of acid-labile drugs or may decrease the absorption of drugs. There have been reports of increased potential for myelosuppression when cimetidine is administered concurrently with drugs capable of causing bone marrow suppression. An understanding of the mechanisms involved in cimetidine drug interactions allows the clinician to prevent and predict these interactions.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007654 Ketoconazole Broad spectrum antifungal agent used for long periods at high doses, especially in immunosuppressed patients. Nizoral,R-41400,R41,400,R41400,R 41400
D008787 Metoclopramide A dopamine D2 antagonist that is used as an antiemetic. 4-Amino-5-chloro-N-(2-(diethylamino)ethyl)-2-methoxybenzamide,Cerucal,Maxolon,Metaclopramide,Metoclopramide Dihydrochloride,Metoclopramide Hydrochloride,Metoclopramide Monohydrochloride,Metoclopramide Monohydrochloride, Monohydrate,Primperan,Reglan,Rimetin,Dihydrochloride, Metoclopramide,Hydrochloride, Metoclopramide,Monohydrochloride, Metoclopramide
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011413 Propantheline A muscarinic antagonist used as an antispasmodic, in rhinitis, in urinary incontinence, and in the treatment of ulcers. At high doses it has nicotinic effects resulting in neuromuscular blocking. Pro-Banthine,Probanthine,Propantheline Bromide,Bromide, Propantheline,Pro Banthine
D002927 Cimetidine A histamine congener, it competitively inhibits HISTAMINE binding to HISTAMINE H2 RECEPTORS. Cimetidine has a range of pharmacological actions. It inhibits GASTRIC ACID secretion, as well as PEPSIN and GASTRIN output. Altramet,Biomet,Biomet400,Cimetidine HCl,Cimetidine Hydrochloride,Eureceptor,Histodil,N-Cyano-N'-methyl-N''-(2-(((5-methyl-1H-imidazol-4-yl)methyl)thio)ethyl)guanidine,SK&F-92334,SKF-92334,Tagamet,HCl, Cimetidine,Hydrochloride, Cimetidine,SK&F 92334,SK&F92334,SKF 92334,SKF92334

Related Publications

E M Sorkin, and D L Darvey
June 1983, The Journal of family practice,
E M Sorkin, and D L Darvey
February 1984, The Journal of family practice,
E M Sorkin, and D L Darvey
January 1984, The American journal of medicine,
E M Sorkin, and D L Darvey
December 1981, American journal of hospital pharmacy,
E M Sorkin, and D L Darvey
August 1982, Deutsche medizinische Wochenschrift (1946),
E M Sorkin, and D L Darvey
December 1983, Casopis lekaru ceskych,
E M Sorkin, and D L Darvey
January 1982, Clinical pharmacokinetics,
E M Sorkin, and D L Darvey
August 1981, The Australian nurses' journal. Royal Australian Nursing Federation,
E M Sorkin, and D L Darvey
November 1981, Postgraduate medicine,
E M Sorkin, and D L Darvey
January 1982, Clinical pharmacy,
Copied contents to your clipboard!