Modulation of long-term potentiation: effects of adrenergic and neuroleptic drugs. 1982

T V Dunwiddie, and N L Roberson, and T Worth

A variety of drugs which either mimic or antagonize the effects of norepinephrine and dopamine were tested for their ability to modulate long-term potentiation (LTP) in the rat hippocampus in vitro. Neither administration of norepinephrine, amphetamine or adrenergic antagonists, nor pretreatment with reserpine or DSP4 (which selectively destroys noradrenergic afferents to the hippocampus) had any significant effect on the magnitude of LTP. Isoproterenol, a beta-adrenergic receptor agonist, was able to partially block LTP, but this did not appear to be due to a direct action of isoproterenol on LTP. Neuroleptic drugs such as trifluoperazine were able to block LTP almost completely; however, this action was not stereospecific. Other dopamine antagonists such as sulpiride had no effect on LTP. The ability of neuroleptics to antagonize LTP was more closely related to their ability to block calmodulin than to their relative potencies as dopamine antagonists. It would appear that neither norepinephrine nor adrenergic antagonists influence the amount of LTP elicited by repetitive stimulation; however, drugs which have been shown to interfere with calmodulin-mediated cellular processes do antagonize this phenomenon.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011939 Mental Recall The process whereby a representation of past experience is elicited. Recall, Mental
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013566 Sympathomimetics Drugs that mimic the effects of stimulating postganglionic adrenergic sympathetic nerves. Included here are drugs that directly stimulate adrenergic receptors and drugs that act indirectly by provoking the release of adrenergic transmitters. Amines, Sympathomimetic,Sympathomimetic,Sympathomimetic Agent,Sympathomimetic Drug,Sympathomimetic Agents,Sympathomimetic Drugs,Sympathomimetic Effect,Sympathomimetic Effects,Agent, Sympathomimetic,Agents, Sympathomimetic,Drug, Sympathomimetic,Drugs, Sympathomimetic,Effect, Sympathomimetic,Effects, Sympathomimetic,Sympathomimetic Amines
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

T V Dunwiddie, and N L Roberson, and T Worth
September 2015, Learning & memory (Cold Spring Harbor, N.Y.),
T V Dunwiddie, and N L Roberson, and T Worth
January 1985, Advances in biochemical psychopharmacology,
T V Dunwiddie, and N L Roberson, and T Worth
January 1980, Advances in biochemical psychopharmacology,
T V Dunwiddie, and N L Roberson, and T Worth
October 1978, Harefuah,
T V Dunwiddie, and N L Roberson, and T Worth
July 1984, Brain research,
T V Dunwiddie, and N L Roberson, and T Worth
March 1996, Neuropharmacology,
T V Dunwiddie, and N L Roberson, and T Worth
September 2008, Neurobiology of learning and memory,
T V Dunwiddie, and N L Roberson, and T Worth
September 1998, European journal of pharmacology,
T V Dunwiddie, and N L Roberson, and T Worth
October 2012, Learning & memory (Cold Spring Harbor, N.Y.),
T V Dunwiddie, and N L Roberson, and T Worth
July 1991, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!