A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15-1788, benzodiazepine tranquilizers, beta-carbolines, and phenobarbitone. 1982

P Polc, and E P Bonetti, and R Schaffner, and W Haefely

The potent benzodiazepine receptor ligands beta-carboline-3-carboxylic acid ethyl ester (beta-CCE) and the corresponding methylester (beta-CCM) administered i.v. depressed segmental dorsal root potentials in spinal cats, reversed the prolongation of dorsal root potentials by phenobarbitone, and abolished the depression of a motor performance task induced by phenobarbitone in mice; beta-CCE enhanced the low-frequency facilitation of pyramidal population spikes in the hippocampus of anaesthetized rats. These effects of beta-carbolines reflect a depression of GABAergic synaptic transmission and, thus, are diametrically opposed to the enhancing action of benzodiazepine tranquilizers. The specific benzodiazepine antagonist, Ro 15-1788, while not affecting dorsal root potentials, hippocampal population spikes or phenobarbitone-induced motor performance depression, abolished the effects of beta-CCE on the three parameters and similar effects of beta-CCM on the spinal cord and motor performance. A three-state model of the benzodiazepine receptor is proposed in which benzodiazepine tranquilizers act as agonists enhancing the function of the benzodiazepine receptor as a coupling unit between GABA receptor and chloride channel, beta-carbolines act as "inverse agonists" reducing this coupling function, and Ro 15-1788 represents a competitive antagonist blocking both the enhancing effect of agonists and the depressant effect of "inverse agonists" on GABAergic synaptic transmission.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002243 Carbolines A group of pyrido-indole compounds. Included are any points of fusion of pyridine with the five-membered ring of indole and any derivatives of these compounds. These are similar to CARBAZOLES which are benzo-indoles. Carboline,Pyrido(4,3-b)Indole,Beta-Carbolines,Pyrido(4,3-b)Indoles,Beta Carbolines
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D005442 Flumazenil A potent benzodiazepine receptor antagonist. Since it reverses the sedative and other actions of benzodiazepines, it has been suggested as an antidote to benzodiazepine overdoses. Flumazepil,Anexate,Lanexat,Ro 15-1788,Romazicon,Ro 15 1788,Ro 151788

Related Publications

P Polc, and E P Bonetti, and R Schaffner, and W Haefely
January 1987, Journal de toxicologie clinique et experimentale,
P Polc, and E P Bonetti, and R Schaffner, and W Haefely
January 1986, Psychopharmacology,
P Polc, and E P Bonetti, and R Schaffner, and W Haefely
January 1987, Neuropsychobiology,
P Polc, and E P Bonetti, and R Schaffner, and W Haefely
July 1983, Pharmacology, biochemistry, and behavior,
P Polc, and E P Bonetti, and R Schaffner, and W Haefely
August 1984, Der Anaesthesist,
P Polc, and E P Bonetti, and R Schaffner, and W Haefely
June 1986, Archives of internal medicine,
P Polc, and E P Bonetti, and R Schaffner, and W Haefely
July 1988, Der Anaesthesist,
P Polc, and E P Bonetti, and R Schaffner, and W Haefely
January 1982, Psychopharmacology,
P Polc, and E P Bonetti, and R Schaffner, and W Haefely
June 1987, Methods and findings in experimental and clinical pharmacology,
Copied contents to your clipboard!