Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle. 1982

E A Richter, and N B Ruderman, and H Galbo

The role of alpha- and beta-adrenergic receptor stimulation for the effect of epinephrine on muscle glycogenolysis, glucose- and oxygen uptake and muscle performance was studied in the perfused rat hindquarter at rest and during electrical stimulation (60 contractions/min). Adrenergic stimulation was obtained by epinephrine in a physiological concentration (2.4 X 10(-8) M) and alpha- and beta-adrenergic blockade by 10(-5) M phentolamine and propranolol, respectively. Epinephrine enhanced net glycogenolysis during contractions most markedly in slow-twitch red fibers. In these fibers the effect was mediated by alpha- as well as by beta-adrenergic stimulation, the latter involving production of cAMP, phosphorylase activation and synthase inactivation. In contrast, in fast-twitch fibers only beta-adrenergic mechanisms were involved in the glycogenolytic effect of epinephrine. Moreover, inactivation of synthase was less in these fibers. Epinephrine also increased the net release of lactate from the hindquarter, an effect abolished by combined alpha- and beta-adrenergic blockade but by neither alpha- nor beta-adrenergic blockade alone. Epinephrine increased uptake of oxygen and glucose by stimulation of alpha-adrenergic receptors and had a positive inotropic effect during contractions which was abolished by alpha- as well as by beta-adrenergic blockade. The results indicate that epinephrine has profound effects on contracting muscle, and that these effects are elicited through different combinations of alpha- and beta-adrenergic receptor stimulation.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006003 Glycogen

Related Publications

E A Richter, and N B Ruderman, and H Galbo
February 1986, The American journal of medicine,
E A Richter, and N B Ruderman, and H Galbo
December 1983, Veterinary research communications,
E A Richter, and N B Ruderman, and H Galbo
November 1970, The American journal of physiology,
E A Richter, and N B Ruderman, and H Galbo
December 1990, Journal of applied physiology (Bethesda, Md. : 1985),
E A Richter, and N B Ruderman, and H Galbo
April 1978, Acta pharmacologica et toxicologica,
E A Richter, and N B Ruderman, and H Galbo
August 1985, The Journal of biological chemistry,
E A Richter, and N B Ruderman, and H Galbo
December 2004, American journal of physiology. Heart and circulatory physiology,
E A Richter, and N B Ruderman, and H Galbo
March 1973, Bollettino della Societa italiana di biologia sperimentale,
E A Richter, and N B Ruderman, and H Galbo
September 1979, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
E A Richter, and N B Ruderman, and H Galbo
September 1990, The Journal of trauma,
Copied contents to your clipboard!