Regional release of [3H]dopamine from rat brain in vitro: effects of opioids on release induced by potassium, nicotine, and L-glutamic acid. 1983

M Marien, and J Brien, and K Jhamandas

Previous studies have suggested that the release of dopamine (DA) in the rat brain may be sensitive to modulation by opioid agents, including the endogenous opioid peptides (enkephalins and endorphins). The present study examined the effects of morphine and the enkephalin analogue D-Ala2-Met5-enkephalinamide (DALA) on the release of radiolabeled DA from superfused slices of rat brain regions. The release of preloaded [3H]DA was evoked from slices of the caudate-putamen (CP) by application of potassium (K+), nicotine (NIC), or L-glutamic acid (L-GLU). The release of [3H]DA from slices of the nucleus accumbens (NA), olfactory tubercle (OT), and substantia nigra (SN) was evoked by L-GLU. Both K+ and NIC evoked a concentration-related release of [3H]DA from CP slices. K+-induced release was only partially dependent on calcium (Ca2+), while NIC-evoked release was completely Ca2+ independent. Neither morphine nor DALA influenced the release of [3H]DA evoked by K+ or NIC. L-GLU produced a concentration-dependent release of [3H]DA from slices of CP, NA, OT, and SN. In all four brain regions, this release was (a) Ca2+-dependent, (b) strongly inhibited by low concentrations of magnesium (Mg2+), (c) greater than the release evoked by D-GLU, (d) attenuated by the putative L-GLU receptor antagonist glutamic acid diethylester (GDEE), and (e) insensitive to tetrodotoxin (TTX) except in the SN. Morphine produced a significant inhibition of L-GLU-evoked [3H]DA release from all four regions. Naloxone, which by itself had no significant effect on the L-GLU-evoked release of [3H]DA, blocked the inhibitory effect of morphine on this release in the CP but not in the other regions. Levorphanol and dextrorphan were equipotent in reducing the glutamate-stimulated release of [3H]DA from CP slices. DALA had no effect on L-GLU-induced release in any of the brain regions examined. The results indicate that L-GLU provokes regional release of DA by acting at a Mg2+-sensitive glutamate receptor. This release is selectively modified by morphine through a mechanism which is insensitive to naloxone.

UI MeSH Term Description Entries
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin

Related Publications

M Marien, and J Brien, and K Jhamandas
November 1978, British journal of pharmacology,
M Marien, and J Brien, and K Jhamandas
October 1982, Biochemical and biophysical research communications,
M Marien, and J Brien, and K Jhamandas
November 1987, Journal of neurochemistry,
M Marien, and J Brien, and K Jhamandas
June 1989, Toxicology and applied pharmacology,
M Marien, and J Brien, and K Jhamandas
January 1991, General pharmacology,
Copied contents to your clipboard!