Fine structural studies on a type of somatostatin-immunoreactive neuron and its synaptic connections in the rat neostriatum: a correlated light and electron microscopic study. 1983

H Takagi, and P Somogyi, and J Somogyi, and A D Smith

Somatostatin-immunoreactive neurons in the rat neostriatum were studied by correlated light and electron microscopy using the peroxidase-antiperoxidase immunocytochemical technique. Immunoreactivity was localized in neuronal perikarya and processes. The perikarya were of spindle or fusiform shape (average length 16.9 microns) and were found in all parts of the neostriatum. From each neuron there arose two to four straight immunoreactive dendritelike processes, which could frequently be traced as far as about 130 microns from their perikaryon. Immunoreactive varicose axonlike processes were occasionally found, some of which were proximal axons of identified immunoreactive cells. Nine of the light microscopically identified neurons showing somatostatin-immunoreactivity were studied in the electron microscope; two of them had proximal axons with varicosities. Each neuron had an oval or elongated nucleus, which was always indented. These morphological features correspond well to those of certain "medium-size aspiny" neurons classified by Golgi studies. Although the immunoreactive endproduct was diffusely located throughout the neuron, it was characteristically located in the saccules and large granules (diameter 133 nm) of the Golgi apparatus, and large immunoreactive vesicles of similar size to those in the Golgi apparatus frequently occurred in all parts of axon. Very little synaptic input was found on the perikarya and dendrites of somatostatin-immunoreactive neurons. The perikarya and proximal dendrites received both symmetrical and asymmetrical synaptic input, while the distal dendrites usually received boutons that formed asymmetrical contacts. The somatostatin-immunoreactive boutons contained pleomorphic electron-lucent vesicles (diameter 39.3 nm) and a few large immunoreactive granular vesicles; these boutons always formed symmetrical synapses. Their postsynaptic targets were dendritic shafts, spines, and unclassified dendritic profiles. On the other hand, the varicosities of identified proximal axons of somatostatin-positive neurons did not form typical synapses, since they lacked clusters of small vesicles, but some of them were in direct apposition (via membrane specializations) to unlabelled perikarya or dendrites. It is concluded that somatostatin is a useful marker for a particular type of neuron in the neostriatum. The presence of somatostatin immunoreactivity in synaptic boutons is consistent with the view that somatostatin could be a neurotransmitter in the neostriatum.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

H Takagi, and P Somogyi, and J Somogyi, and A D Smith
September 1984, Neuroscience letters,
H Takagi, and P Somogyi, and J Somogyi, and A D Smith
December 1990, Brain research,
H Takagi, and P Somogyi, and J Somogyi, and A D Smith
February 1986, Journal of neurocytology,
H Takagi, and P Somogyi, and J Somogyi, and A D Smith
January 1986, Acta morphologica Hungarica,
H Takagi, and P Somogyi, and J Somogyi, and A D Smith
December 1986, The Journal of comparative neurology,
H Takagi, and P Somogyi, and J Somogyi, and A D Smith
May 1987, Brain research bulletin,
H Takagi, and P Somogyi, and J Somogyi, and A D Smith
September 1984, Brain research,
Copied contents to your clipboard!