Metabolism of 4-pentenoic acid and inhibition of thiolase by metabolites of 4-pentenoic acid. 1983

H Schulz

The metabolism of 4-pentenoic acid, a hypoglycemic agent and inhibitor of fatty acid oxidation, has been studied in rat heart mitochondria. Confirmed was the conversion of 4-pentenoic acid to 2,4-pentadienoyl coenzyme A (CoA), which either is directly degraded via beta-oxidation or is first reduced in a NADPH-dependent reaction before it is further degraded by beta-oxidation. At pH 6.9, the NADPH-dependent reduction of 2,4-pentadienoyl-CoA proceeds 10 times faster than its degradation by beta-oxidation. At pH 7.8, this ratio is only 2 to 1. The direct beta-oxidation of 2,4-pentadienoyl-CoA leads to the formation of 3-keto-4-pentenoyl-CoA, which is highly reactive and spontaneously converts to another 3-ketoacyl-CoA derivative (compound X). 3-Keto-4-pentenoyl-CoA is a poor substrate of 3-ketoacyl-CoA thiolase (EC 2.3..1.16) whereas compound X is not measurably acted upon by this enzyme. The effects of several metabolites of 4-pentenoic acid on the activity of 3-ketoacyl-CoA thiolase were studied. 3,4-Pentadienoyl-CoA is a weak inhibitor of this enzyme that is protected against the inhibition by acetoacetyl-CoA. The most effective inhibitor of 3-ketoacyl-CoA thiolase was found to be 3-keto-4-pentenoyl-CoA, which inhibits the enzyme in both a reversible and irreversible manner. The reversible inhibition is possibly a consequence of the inhibitor being a poor substrate of 3-ketoacyl-CoA thiolase. It is concluded that 4-pentenoic acid is metabolized in mitochondria by two pathways. The minor yields 3-keto-4-pentenoyl-CoA, which acts both as a reversible and as a irreversible inhibitor of 3-ketoacyl-CoA thiolase and consequently of fatty acid oxidation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D005229 Fatty Acids, Monounsaturated Fatty acids which are unsaturated in only one position. Monounsaturated Fatty Acid,Acid, Monounsaturated Fatty,Acids, Monounsaturated Fatty,Fatty Acid, Monounsaturated,Monounsaturated Fatty Acids
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D000101 Acetyl-CoA C-Acetyltransferase An enzyme that catalyzes the formation of acetoacetyl-CoA from two molecules of ACETYL COA. Some enzymes called thiolase or thiolase-I have referred to this activity or to the activity of ACETYL-COA C-ACYLTRANSFERASE. Acetoacetyl CoA Thiolase,Acetyl Coenzyme A Acetyltransferase,Acetyl-CoA Acetyltransferase,Acetyl CoA Acetyltransferase,Acetyl CoA C Acetyltransferase,Acetyltransferase, Acetyl-CoA,C-Acetyltransferase, Acetyl-CoA,CoA Thiolase, Acetoacetyl,Thiolase, Acetoacetyl CoA
D000102 Acetyl-CoA C-Acyltransferase Enzyme that catalyzes the final step of fatty acid oxidation in which ACETYL COA is released and the CoA ester of a fatty acid two carbons shorter is formed. 3-Ketoacyl CoA Thiolase,3-Ketothiolase,Acetyl CoA Acyltransferase,Acetyl Coenzyme A Acyltransferase,beta-Ketothiolase,2-Methylacetoacetyl CoA Thiolase,3-Oxoacyl CoA Thiolase,3-Oxoacyl-Coenzyme A Thiolase,beta-Ketoacyl Thiolase,Acetyl CoA C Acyltransferase,Acyltransferase, Acetyl CoA,C-Acyltransferase, Acetyl-CoA,CoA Acyltransferase, Acetyl,CoA Thiolase, 2-Methylacetoacetyl,CoA Thiolase, 3-Ketoacyl,CoA Thiolase, 3-Oxoacyl,Thiolase, 2-Methylacetoacetyl CoA,Thiolase, 3-Ketoacyl CoA,Thiolase, 3-Oxoacyl CoA,Thiolase, 3-Oxoacyl-Coenzyme A,Thiolase, beta-Ketoacyl,beta Ketoacyl Thiolase,beta Ketothiolase
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

H Schulz
January 1975, Biochemical and biophysical research communications,
H Schulz
March 1970, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
H Schulz
July 1970, The American journal of clinical nutrition,
H Schulz
February 1976, The Journal of protozoology,
H Schulz
August 1969, Biochemical and biophysical research communications,
H Schulz
October 1971, The American journal of physiology,
H Schulz
August 1990, Acta paediatrica Japonica : Overseas edition,
Copied contents to your clipboard!