Transformation of rat cerebral endothelial cells by Rous sarcoma virus. 1983

C A Diglio, and D E Wolfe, and P Meyers

Rat cerebral microvascular endothelial cells were infected with Schmidt-Ruppin Rous sarcoma virus-strain D (SR-RSV-D), an avian retrovirus. A single focus of transformed cells was isolated and the resultant cell line designated RCE-T1. The specificity for SR-RSV-D transformation was determined by virus rescue assay and demonstration of virus-specific antigens. RCE-T1 cells are virogenic when fused with chicken embryo fibroblasts (CEF) and do not produce infectious virus as demonstrated by the absence of detectable virus in culture fluid from these cells alone. Studies using an enzyme-linked immunosorbent assay (ELISA) for avian retrovirus-coded internal proteins show that RSV-transformed endothelial cells contain mainly p27 and react to some extent to p19 and p15 viral antigens. These data demonstrate conclusively that the transformation event was indeed due to SR-RSV-D. In addition, chromosome analysis confirmed these cells to be of rat origin. RSV-transformed endothelial cells express the typical array of transformation-related properties such as anchorage-independent cell growth in soft agar, decreased cell adhesiveness, ability to grow in low serum, and capability of producing tumors in newborn rats. Demonstration of differentiated endothelial characteristics included positive immunofluorescent staining for factor VIII antigen and angiotensin-converting enzyme and histochemical localization of gamma-glutamyl transpeptidase activity. This cell line should provide a useful model to study not only specialized biochemical and other functional characteristics of cerebrovascular endothelium but also the cellular mechanisms that involve the transition from normal to neoplastic expression.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums

Related Publications

C A Diglio, and D E Wolfe, and P Meyers
June 1980, Journal of virology,
C A Diglio, and D E Wolfe, and P Meyers
June 1969, Proceedings of the National Academy of Sciences of the United States of America,
C A Diglio, and D E Wolfe, and P Meyers
July 1964, Nature,
C A Diglio, and D E Wolfe, and P Meyers
January 1985, Virology,
C A Diglio, and D E Wolfe, and P Meyers
January 1976, Journal of cellular physiology,
C A Diglio, and D E Wolfe, and P Meyers
July 1971, Igaku to seibutsugaku. Medicine and biology,
C A Diglio, and D E Wolfe, and P Meyers
February 1979, Cell differentiation,
C A Diglio, and D E Wolfe, and P Meyers
January 1978, Journal of the National Cancer Institute,
C A Diglio, and D E Wolfe, and P Meyers
March 1977, Cancer research,
C A Diglio, and D E Wolfe, and P Meyers
August 1979, Cell,
Copied contents to your clipboard!