Structure-activity requirements for hypotension and alpha-adrenergic receptor blockade by analogues of atropine. 1983

E H Cantor, and S Abraham, and E A Marcum, and S Spector

The hypotensive action of various antimuscarinic compounds structurally related to atropine was studied in conscious, unanesthetized rats. The alpha-adrenolytic activity of these agents was assessed both in vivo (blockade of norepinephrine-induced pressor response) and in vitro (displacement of [3H]WB-4101 binding). Benztropine, homatropine and hyoscyamine caused hypotension and produced alpha-adrenergic receptor blockade similar to atropine. Other analogues were either inactive (atroscine, scopolamine, tropic acid and tropine) or evoked nonspecific changes in blood pressure and lacked alpha-adrenolytic activity (benactyzine, eucatropine, methylatropine, methylhomatropine and methylscopolamine). Based on these data, we propose the following structure-activity relationship for hypotension and alpha-adrenolytic activity: (a) the tropine moiety is inactive unless it is attached to another group by an ester linkage, (b) chemical modification of the tropine moiety, including quaternization, decreases potency, (c) the d-stereoisomer appears to be more potent than the corresponding 1-form.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001286 Atropine Derivatives Analogs and derivatives of atropine. Atropines
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

E H Cantor, and S Abraham, and E A Marcum, and S Spector
November 1982, Life sciences,
E H Cantor, and S Abraham, and E A Marcum, and S Spector
April 1992, Nihon rinsho. Japanese journal of clinical medicine,
E H Cantor, and S Abraham, and E A Marcum, and S Spector
July 1984, Molecular pharmacology,
E H Cantor, and S Abraham, and E A Marcum, and S Spector
May 1978, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
E H Cantor, and S Abraham, and E A Marcum, and S Spector
March 2002, The Journal of the Association of Physicians of India,
E H Cantor, and S Abraham, and E A Marcum, and S Spector
September 1984, Molecular pharmacology,
E H Cantor, and S Abraham, and E A Marcum, and S Spector
January 1967, Medicina et pharmacologia experimentalis. International journal of experimental medicine,
E H Cantor, and S Abraham, and E A Marcum, and S Spector
February 1986, The American journal of medicine,
E H Cantor, and S Abraham, and E A Marcum, and S Spector
November 1968, The British journal of surgery,
E H Cantor, and S Abraham, and E A Marcum, and S Spector
January 1987, Molecular pharmacology,
Copied contents to your clipboard!