Enhancement of hypoxic pulmonary vasoconstriction by almitrine in the dog. 1983

H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West

In order to test the hypothesis of enhancement of hypoxic pulmonary vasoconstriction by Almitrine, 12 anesthetized and paralyzed dogs with normal lungs were studied under controlled ventilation. They were ventilated in random sequence with air, 12% O2, and 100% O2, and almitrine (0.1 mg/kg body weight) was infused over 30 min during each O2 mixture. The multiple inert gas elimination technique was used to detect alterations in ventilation-perfusion (VA/Q) mismatching before and during the interventions and to measure cardiac output (QT). Arterial, mixed venous and expired gases, inert gas concentrations, and hemodynamic measurements were made while the dogs were breathing the different O2 mixtures before infusing the drug, near the end of 30 min of infusion and 30 min after infusion had ended. There were no significant changes in pH, PaO2, PaCO2, QT, oxygen uptake, oxygen delivery index, systemic vascular resistance, mean systemic arterial pressure, heart rate, stroke volume index, or VA/Q distribution during the experiment. Significant increases in: (a) pulmonary artery pressure (PA), (b) the pressure difference between PA and pulmonary capillary wedge pressure (PCw), and (c) pulmonary vascular resistance (PVR) occurred when the drug was infused during 12% O2 and air, but not during 100% O2. The PVR increased 59.7% with almitrine infusion during 12% O2 and 38.4% during air breathing (p less than or equal to 0.01), but there was no significant change during 100% O2. Vascular responses were not dependent on the order in which the different O2 mixtures were administered. These data strongly suggest that almitrine enhances hypoxic vasoconstriction in the lung, and this effect may explain reported improvement in PaO2 in hypoxic patients given the drug.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011659 Pulmonary Gas Exchange The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER. Exchange, Pulmonary Gas,Gas Exchange, Pulmonary
D011667 Pulmonary Veins The veins that return the oxygenated blood from the lungs to the left atrium of the heart. Pulmonary Vein,Vein, Pulmonary,Veins, Pulmonary
D011669 Pulmonary Wedge Pressure The blood pressure as recorded after wedging a CATHETER in a small PULMONARY ARTERY; believed to reflect the PRESSURE in the pulmonary CAPILLARIES. Pulmonary Artery Wedge Pressure,Pulmonary Capillary Wedge Pressure,Pulmonary Venous Wedge Pressure,Wedge Pressure,Pressure, Pulmonary Wedge,Pressures, Pulmonary Wedge,Pulmonary Wedge Pressures,Wedge Pressure, Pulmonary,Wedge Pressures, Pulmonary,Pressure, Wedge,Pressures, Wedge,Wedge Pressures
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000697 Central Nervous System Stimulants A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here. Analeptic,Analeptic Agent,Analeptic Drug,Analeptics,CNS Stimulant,CNS Stimulants,Central Nervous System Stimulant,Central Stimulant,Analeptic Agents,Analeptic Drugs,Central Stimulants,Agent, Analeptic,Agents, Analeptic,Drug, Analeptic,Drugs, Analeptic,Stimulant, CNS,Stimulant, Central,Stimulants, CNS,Stimulants, Central
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
January 1989, The American review of respiratory disease,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
February 1989, The Tohoku journal of experimental medicine,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
July 1988, Nihon Kyobu Shikkan Gakkai zasshi,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
August 1990, Anesthesiology,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
November 1990, Anesthesia and analgesia,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
October 1987, Anesthesiology,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
August 1976, Journal of applied physiology,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
August 1992, The American journal of physiology,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
December 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
H Romaldini, and R Rodriguez-Roisin, and P D Wagner, and J B West
April 1979, British journal of anaesthesia,
Copied contents to your clipboard!