Reactivation of substrate-inactivated brain glutamate decarboxylase. 1983

M P Meeley, and D L Martin

The effects of ATP and inorganic phosphate (Pi) on the reactivation of glutamate apodecarboxylase by its cofactor pyridoxal-5'-phosphate (pyridoxal-P) was studied. Apoenzyme was prepared by preincubation with glutamate. Apoenzyme prepared with glutamate alone was reactivated slowly and incompletely by adding a saturating concentration of pyridoxal-P (20 microM). Reactivation was slightly enhanced by 1-10 mM Pi. Reactivation by pyridoxal-P plus Pi was greatly enhanced by the presence of low concentrations (less than 100 microM) of ATP during the preparation of apoenzyme with glutamate. Reactivation was much lower if Pi was omitted. Enhancement of reactivation by ATP was due to its effect during apoenzyme formation, since ATP did not enhance reactivation if added only during reactivation and since the enhancing effect persisted after the removal of free ATP by chromatography on Sephadex G-25 after apoenzyme preparation and before reactivation. Reactivation was inhibited by high concentrations of ATP (greater than 100 microM), possibly by competition of ATP for the cofactor binding site. Four factors (glutamate, pyridoxal-P, ATP, and Pi) control a cycle of inactivation and reactivation that appears to be important in the regulation of brain glutamate decarboxylase.

UI MeSH Term Description Entries
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011732 Pyridoxal Phosphate This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE). Pyridoxal 5-Phosphate,Pyridoxal-P,Phosphate, Pyridoxal,Pyridoxal 5 Phosphate,Pyridoxal P
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M P Meeley, and D L Martin
October 1968, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M P Meeley, and D L Martin
January 1977, Molekuliarnaia biologiia,
M P Meeley, and D L Martin
January 1974, Biochimie,
M P Meeley, and D L Martin
January 1985, Methods in enzymology,
M P Meeley, and D L Martin
September 1987, Cellular and molecular neurobiology,
M P Meeley, and D L Martin
August 1990, Journal of neurochemistry,
M P Meeley, and D L Martin
November 1985, The Biochemical journal,
M P Meeley, and D L Martin
January 1992, BioFactors (Oxford, England),
Copied contents to your clipboard!