Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain. 1983

S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow

The uropathogenic strain Escherichia coli J96 mediates mannose-resistant hemagglutination owing to production of a digalactoside-binding adhesin. A cosmid clone from this strain has been isolated that, when harbored in E. coli K-12, expressed Pap pili and this adhesin (R. Hull et al., Infect. Immun. 33:933-938, 1981). By transposon mutagenesis and by the construction of a number of hybrid plasmid derivatives, we have demonstrated that about 8.5 kilobases of DNA is required to generate a mannose-resistant hemagglutination-positive phenotype in E. coli K-12 strain P678-54. The structural gene for the Pap pili monomer, papA, has been identified and mapped close to the promotor-proximal end of the Pap operon. Although strain P678-54 that harbored a Tn5 insertion within papA showed a mannose-resistant hemagglutination-positive phenotype, it was negative in a competitive enzyme-linked immunosorbent assay with anti-Pap pilus serum. This could mean that a Pap adhesin is encoded by a region on the Pap operon that is distinct from papA.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic

Related Publications

S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
June 1991, Infection and immunity,
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
January 1985, Current topics in microbiology and immunology,
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
March 1989, Molecular microbiology,
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
May 2003, Bioorganic & medicinal chemistry,
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
January 2000, Advances in experimental medicine and biology,
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
November 1998, Molecular genetics and metabolism,
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
February 2008, Infection and immunity,
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
March 1985, Proceedings of the National Academy of Sciences of the United States of America,
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
August 1999, Science (New York, N.Y.),
S Normark, and D Lark, and R Hull, and M Norgren, and M Båga, and P O'Hanley, and G Schoolnik, and S Falkow
June 1985, Journal of bacteriology,
Copied contents to your clipboard!