Influence of beta-adrenergic blockade on glucose-induced thermogenesis in man. 1983

K Acheson, and E Jéquier, and J Wahren

The role of beta-adrenergically mediated sympathetic nervous activity in the regulation of glucose-induced thermogenesis was examined in healthy male subjects. Respiratory gas exchange was measured continuously, using the ventilated hood technique, under conditions of hyperinsulinemia and hyperglycemia (glucose clamp technique, insulin infusion 1 mU/kg per min, glucose levels 125 mg/dl above basal) before and after beta-adrenergic blockade (i.v. propranolol, 3-mg bolus plus 0.1 mg/min for 2 h). After 2 h of insulin and glucose infusion in series 1, glucose uptake had increased to 23.5 +/- 2.3 mg/kg per min and insulin concentration to 199 +/- 21 microU/ml. Simultaneously, the energy expenditure had risen by 0.39 +/- 0.05 kcal/min above basal. After propranolol administration, glucose uptake did not change, while energy expenditure fell significantly, to a level 0.28 +/- 0.04 kcal/min above basal. The glucose-induced thermogenesis (GIT) was 6.5 +/- 0.3% before and 4.6 +/- 0.5% (P less than 0.02) after propranolol. In series 2, insulin and glucose infusion was continued for 4 h without propranolol administration. Glucose uptake rose (+12%) and insulin levels increased (+40%) between the 2nd and 4th h but energy expenditure and GIT remained unchanged. Subjects in series 3 received saline infusion alone for 3 h, at which time propranolol administration as in series 1 was added during a further 2-h period. No changes in energy expenditure were seen during saline or propranolol infusion. These data demonstrate the presence of a beta-adrenergically mediated sympathetic nervous component in glucose-induced thermogenesis in healthy human subjects. This factor may be of importance in the regulation of normal body weight in man.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006943 Hyperglycemia Abnormally high BLOOD GLUCOSE level. Postprandial Hyperglycemia,Hyperglycemia, Postprandial,Hyperglycemias,Hyperglycemias, Postprandial,Postprandial Hyperglycemias
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic

Related Publications

K Acheson, and E Jéquier, and J Wahren
June 1986, Metabolism: clinical and experimental,
K Acheson, and E Jéquier, and J Wahren
March 1984, The Journal of clinical investigation,
K Acheson, and E Jéquier, and J Wahren
May 1984, Metabolism: clinical and experimental,
K Acheson, and E Jéquier, and J Wahren
May 1990, Clinical physiology (Oxford, England),
K Acheson, and E Jéquier, and J Wahren
December 1983, The American journal of physiology,
K Acheson, and E Jéquier, and J Wahren
March 1989, The American journal of physiology,
K Acheson, and E Jéquier, and J Wahren
July 1987, The American journal of physiology,
K Acheson, and E Jéquier, and J Wahren
September 1982, The American journal of physiology,
K Acheson, and E Jéquier, and J Wahren
March 1986, Gut,
K Acheson, and E Jéquier, and J Wahren
February 1973, Casopis lekaru ceskych,
Copied contents to your clipboard!