Graded synaptic transmission between identified spiking neurons. 1983

K Graubard, and J A Raper, and D K Hartline

Graded synaptic transmission between spiking motoneurons of the pyloric group was studied in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus. Intracellular microelectrodes were placed in the cell bodies of both pre- and postsynaptic neurons. Graded synaptic transmission was found between all tested cell pairs that were known to display spike-evoked synaptic transmission, including PD to LP, PD to PE, PD to PL, PL to LP, and LP to PD. Graded synaptic transmission was effective below the threshold for spikes. Thus, it was possible to study the influence of graded synaptic transmission in normally active ganglia without blockage of spikes by tetrodotoxin. PD and LP neurons that were known to produce spike-evoked inhibitory postsynaptic potentials (IPSPs) were also capable of producing inhibitory effects on postsynaptic cells below the threshold for spikes. When tetrodotoxin (TTX) was used to eliminate both spikes and endogenous membrane oscillations, depolarization of presynaptic neurons produced hyperpolarization of postsynaptic cells. The presynaptic response to a current step usually showed a small early peak and a maintained, slightly lower plateau. The postsynaptic response had a delay, then a rise to a pronounced peak, and a roughly exponential decline to a maintained plateau. There was a presynaptic voltage threshold for any postsynaptic response; beyond the threshold, both pre- and postsynaptic peak and plateau responses increased with increasing current. PD neurons normally are depolarized beyond their release threshold in tetrodotoxin and, thus, released transmitter tonically for the many-hour duration of these experiments. Chemical, tonic synaptic transmission, here called graded synaptic transmission, was demonstrated by the presence of the following criteria: 1) reversal in sign of the postsynaptic response, 2) synaptic delay, 3) reversal potential, 4) postsynaptic conductance increase, 5) graded and reversible block by reduction of external Ca2+, and 6) specific graded block of the LP-to-PD synapse without effect on the PD-to-LP synapse by less than 10 microM picrotoxin added to the bathing medium.

UI MeSH Term Description Entries
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

K Graubard, and J A Raper, and D K Hartline
September 2011, The European journal of neuroscience,
K Graubard, and J A Raper, and D K Hartline
February 2003, The Journal of biological chemistry,
K Graubard, and J A Raper, and D K Hartline
January 2020, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Graubard, and J A Raper, and D K Hartline
January 1992, Neirofiziologiia = Neurophysiology,
K Graubard, and J A Raper, and D K Hartline
March 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Graubard, and J A Raper, and D K Hartline
February 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Graubard, and J A Raper, and D K Hartline
November 2002, Proceedings of the National Academy of Sciences of the United States of America,
K Graubard, and J A Raper, and D K Hartline
September 1988, Science (New York, N.Y.),
K Graubard, and J A Raper, and D K Hartline
January 2003, Neuroscience,
K Graubard, and J A Raper, and D K Hartline
January 1991, Journal de physiologie,
Copied contents to your clipboard!