Regulation of aldosterone secretion during altered sodium intake. 1983

G Aguilera, and K J Catt

The interactions of the renin-angiotensin system with other factors in the regulation of aldosterone secretion were analyzed during altered sodium in the rat. During sodium restriction, the rise in aldosterone one secretion was accompanied by trophic changes in the adrenal glomerulosa zone including increased angiotensin II receptors and enzymes of early and late steps in the aldosterone biosynthetic pathway. All these effects of sodium restriction were reproduced by infusion of angiotensin II, and could be prevented by administration of the converting enzyme inhibitor, SQ 14,225. These findings indicate that the adrenal secretory and trophic responses to sodium restriction are mediated by angiotensin II. In hypophysectomized rats, the basal activities of the enzymes of the early aldosterone biosynthetic pathway were reduced, contributing to the blunted aldosterone responsiveness to sodium deficiency. However, sodium restriction for 6 days significantly increased adrenal glomerulosa angiotensin II receptors and enzymes of the early and late aldosterone biosynthetic pathway, indicating that the pituitary gland is not necessary for the adrenal effects of angiotensin II. In contrast to the prominent glomerulotropic actions of angiotensin II in rats on normal or low sodium intake, infusion of angiotensin II during high sodium intake did not increase blood aldosterone, angiotensin II receptors, or 18-hydroxylase activity, indicating that the trophic actions of the octapeptide are determined by the state of sodium balance. In recent studies, other factors including potassium, dopamine and somatostatin have been shown to potentiate or inhibit the actions of angiotensin II on the adrenal gland. The ability of such factors to influence the effects of angiotensin II could serve as a protective mechanism to modulate aldosterone responses to angiotensin II when elevations in the circulating level of the peptide occur in the absence of sodium deficiency.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D008787 Metoclopramide A dopamine D2 antagonist that is used as an antiemetic. 4-Amino-5-chloro-N-(2-(diethylamino)ethyl)-2-methoxybenzamide,Cerucal,Maxolon,Metaclopramide,Metoclopramide Dihydrochloride,Metoclopramide Hydrochloride,Metoclopramide Monohydrochloride,Metoclopramide Monohydrochloride, Monohydrate,Primperan,Reglan,Rimetin,Dihydrochloride, Metoclopramide,Hydrochloride, Metoclopramide,Monohydrochloride, Metoclopramide
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004039 Diet, Sodium-Restricted A diet which contains very little sodium chloride. It is prescribed by some for hypertension and for edematous states. (Dorland, 27th ed) Diet, Low-Salt,Diet, Low-Sodium,Diet, Salt-Free,Diet, Low Salt,Diet, Low Sodium,Diet, Salt Free,Diet, Sodium Restricted,Diets, Low-Salt,Diets, Low-Sodium,Diets, Salt-Free,Diets, Sodium-Restricted,Low-Salt Diet,Low-Salt Diets,Low-Sodium Diet,Low-Sodium Diets,Salt-Free Diet,Salt-Free Diets,Sodium-Restricted Diet,Sodium-Restricted Diets
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000450 Aldosterone A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. Aldosterone, (+-)-Isomer,Aldosterone, (11 beta,17 alpha)-Isomer
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine

Related Publications

G Aguilera, and K J Catt
April 1965, The American journal of physiology,
G Aguilera, and K J Catt
January 1963, Suvremenna meditsina,
G Aguilera, and K J Catt
March 1961, British medical journal,
G Aguilera, and K J Catt
January 1981, Problemy endokrinologii,
G Aguilera, and K J Catt
January 1959, Schweizerische medizinische Wochenschrift,
G Aguilera, and K J Catt
January 2019, Vitamins and hormones,
G Aguilera, and K J Catt
April 1971, Klinische Wochenschrift,
G Aguilera, and K J Catt
October 1958, Physiological reviews,
G Aguilera, and K J Catt
January 1988, Annual review of physiology,
Copied contents to your clipboard!