Akazara scallop myosins hybridized with DTNB-light chains of skeletal myosin and with regulatory light chains of gizzard myosin. 1983

T Ojima, and K Nishita, and S Watanabe

Two different hybrid myosins were obtained by combining "desensitized" myosin (DM) of Akazara scallop striated adductor with rabbit skeletal DTNB-light chains (DTNB-LC) and with chicken gizzard regulatory light chains (GR-LC). Using the two hybrid myosins, the following were found: (a) DTNB-LC has an inhibitory effect on the Mg-ATPase activities of Akazara DM and acto-DM both in the absence of calcium and in its presence. (b) DTNB-LC also has an enhancing effect on the superprecipitation activity of acto-DM. (c) The Mg-ATPase activities of DM and acto-DM are made sensitive to calcium by GR-LC, regardless of whether GR-LC is phosphorylated or unphosphorylated. (d) However, the Mg-ATPase activity of acto-myosin hybridized with phosphorylated GR-LC is definitely higher than that of acto-myosin hybridized with unphosphorylated GR-LC.

UI MeSH Term Description Entries
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004228 Dithionitrobenzoic Acid A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate. 5,5'-Dithiobis(2-nitrobenzoic Acid),DTNB,Ellman's Reagent,5,5'-Dithiobis(nitrobenzoate),Acid, Dithionitrobenzoic,Ellman Reagent,Ellmans Reagent,Reagent, Ellman's
D005895 Gizzard, Avian The posterior portion of the avian stomach located between the PROVENTRICULUS and INTESTINE. It consists of a thick muscular wall and small stones (gastroliths) that function to mechanically grind SEEDS and other ingested objects. Gizzard,Ventriculus,Avian Gizzard,Avian Gizzards,Gizzards,Gizzards, Avian
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017301 Ca(2+) Mg(2+)-ATPase An enzyme that catalyzes the hydrolysis of ATP and is activated by millimolar concentrations of either Ca(2+) or Mg(2+). Unlike CA(2+)-TRANSPORTING ATPASE it does not require the second divalent cation for its activity, and is not sensitive to orthovanadate. (Prog Biophys Mol Biol 1988;52(1):1). A subgroup of EC 3.6.1.3. ATPase, Calcium Magnesium,ATPase, Magnesium,Adenosinetriphosphatase, Calcium, Magnesium,Adenosinetriphosphatase, Magnesium,Calcium Magnesium ATPase,Calcium Magnesium Adenosinetriphosphatase,Magnesium ATPase,Magnesium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium, Magnesium,Adenosine Triphosphatase, Magnesium,Ca Mg-ATPase,Ca2+-Mg2+ ATPase,Calcium Magnesium Adenosine Triphosphatase,Mg2+-ATPase,Mg2+-Dependent ATPase,ATPase, Ca2+-Mg2+,ATPase, Mg2+-Dependent,Adenosinetriphosphatase, Calcium Magnesium,Ca Mg ATPase,Ca2+ Mg2+ ATPase,Magnesium Adenosine Triphosphatase,Mg2+ ATPase,Mg2+ Dependent ATPase

Related Publications

T Ojima, and K Nishita, and S Watanabe
May 1985, Journal of molecular biology,
T Ojima, and K Nishita, and S Watanabe
November 1990, Journal of molecular biology,
T Ojima, and K Nishita, and S Watanabe
February 1973, Journal of molecular biology,
T Ojima, and K Nishita, and S Watanabe
September 1983, Journal of molecular biology,
T Ojima, and K Nishita, and S Watanabe
July 1976, Journal of molecular biology,
T Ojima, and K Nishita, and S Watanabe
August 1978, Biochimica et biophysica acta,
T Ojima, and K Nishita, and S Watanabe
January 1982, Methods in enzymology,
T Ojima, and K Nishita, and S Watanabe
February 1976, Nature,
Copied contents to your clipboard!