Topography of cerebroside sulfotransferase in Golgi-enriched vesicles from rat brain. 1983

G Tennekoon, and M Zaruba, and J Wolinsky

Cerebroside sulfotransferase (CST) catalyzes the final step in the synthesis of sulfatide (sulfogalactocerebroside) by transferring the sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to galactocerebroside. Orientation of CST was studied in vesicles enriched in this enzyme obtained from 21-d-old rat brain. Several lines of evidence indicate that CST is located on the luminal side of these vesicles. (a) Sulfation of endogenous galactocerebroside occurred in vesicles only in the presence of a detergent to render the membranes permeable to exogenous PAPS. (b) There is a pool of latent enzyme within the vesicle, which is released by Triton X-100. (c) CST is not destroyed by trypsin unless the vesicle membranes are first made permeable by Triton X-100. (d) Glycolipid substrate, when covalently attached to agarose beads, was not sulfated unless the enzyme was solubilized. These results are similar to those obtained with thiamine pyrophosphatase, which is known to be located within the lumen of the vesicles. This study establishes that an enzyme synthesizing a complex glycolipid is localized within Golgi-enriched vesicles. Since the product of the CST reaction must also be localized to the luminal side of the vesicles, it is most likely that sulfatide is located at the intraperiod line (outer layer) of myelin. The orientation of CST within the vesicle provides a mechanism for the asymmetrical assembly of glycolipids in bilayers.

UI MeSH Term Description Entries
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005699 Galactosylceramides Cerebrosides which contain as their polar head group a galactose moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in beta-galactosidase, is the cause of galactosylceramide lipidosis or globoid cell leukodystrophy. Galactocerebrosides,Galactosyl Ceramide,Galactosyl Ceramides,Galactosylceramide,Ceramide, Galactosyl,Ceramides, Galactosyl
D006017 Glycolipids Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage) Glycolipid
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013466 Sulfurtransferases Enzymes which transfer sulfur atoms to various acceptor molecules. EC 2.8.1. Sulfurtransferase
D013834 Thiamine Pyrophosphatase An enzyme that hydrolyzes thiamine pyrophosphate to thiamine monophosphate plus inorganic phosphate. EC 3.6.1.-. TPPase,Thiamine Pyrophosphate Phosphohydrolase,Phosphohydrolase, Thiamine Pyrophosphate,Pyrophosphatase, Thiamine,Pyrophosphate Phosphohydrolase, Thiamine

Related Publications

G Tennekoon, and M Zaruba, and J Wolinsky
January 1982, Journal of neurochemistry,
G Tennekoon, and M Zaruba, and J Wolinsky
August 1971, The Journal of biological chemistry,
G Tennekoon, and M Zaruba, and J Wolinsky
June 1973, Biochemical and biophysical research communications,
G Tennekoon, and M Zaruba, and J Wolinsky
January 1982, The International journal of biochemistry,
G Tennekoon, and M Zaruba, and J Wolinsky
March 1991, Hepatology (Baltimore, Md.),
G Tennekoon, and M Zaruba, and J Wolinsky
January 1980, European journal of biochemistry,
G Tennekoon, and M Zaruba, and J Wolinsky
August 1978, Biochimica et biophysica acta,
G Tennekoon, and M Zaruba, and J Wolinsky
May 1968, Biochimica et biophysica acta,
G Tennekoon, and M Zaruba, and J Wolinsky
July 1986, Biochemical and biophysical research communications,
Copied contents to your clipboard!