Transcriptional organization of bovine papillomavirus type 1. 1983

L W Engel, and C A Heilman, and P M Howley

Multiple bovine papillomavirus type 1 (BPV-1)-specific polyadenylated RNA species in a BPV-1-infected bovine fibropapilloma were identified and mapped. All of the RNA species were transcribed from the same DNA strand of the BPV-1 genome. Five RNA species previously identified in BPV-1-transformed mouse cells were also present in the bovine fibropapilloma. These five species measured 1,050, 1,150, 1,700, 3,800, and 4,050 bases, mapped within the 69% transforming segment of the BPV-1 genome, and shared a 3' coterminus at 0.53 map units (m.u.). The 5' ends of the bodies of these distinct transcripts were located at ca. 0.03, 0.09, 0.34, 0.39, and 0.41 m.u. Additional polyadenylated RNA species not present in BPV-1-transformed mouse cells were specific for the BPV-1-infected bovine fibropapilloma and measured 1,700, 3,700, 3,800, 6,700, and 8,000 bases. These wart-specific species shared a 3' coterminus at 0.90 m.u. The 5' termini of the bodies of the 1,700- and 3,800-base species mapped at 0.71 and 0.42 m.u., respectively. Exonuclease VII analysis failed to reveal any internal splicing in these two species; however, the presence of small remote 5' leader sequences could not be ruled out. The 3,700-base species hybridized to DNA fragments from the 69% transforming segment as well as from the 31% nontransforming segment of the BPV-1 genome; however, this species was not precisely mapped. The 5' termini of the two largest RNA species (6,700 and 8,000 bases in size) were located at ca. 0.01 and 0.90 m.u., respectively. Since the 5' ends of these mapped adjacent to a TATAAA sequence which could possibly serve as an element of a transcriptional promoter, it is possible that one or both of these species represent nonspliced precursor RNA molecules.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010212 Papilloma A circumscribed benign epithelial tumor projecting from the surrounding surface; more precisely, a benign epithelial neoplasm consisting of villous or arborescent outgrowths of fibrovascular stroma covered by neoplastic cells. (Stedman, 25th ed) Papilloma, Squamous Cell,Papillomatosis,Papillomas,Papillomas, Squamous Cell,Papillomatoses,Squamous Cell Papilloma,Squamous Cell Papillomas
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

L W Engel, and C A Heilman, and P M Howley
November 1986, The Journal of general virology,
L W Engel, and C A Heilman, and P M Howley
October 1994, Journal of virology,
L W Engel, and C A Heilman, and P M Howley
January 1983, Nature,
L W Engel, and C A Heilman, and P M Howley
January 1986, Ciba Foundation symposium,
L W Engel, and C A Heilman, and P M Howley
July 2008, Journal of virology,
L W Engel, and C A Heilman, and P M Howley
September 1997, Virology,
L W Engel, and C A Heilman, and P M Howley
December 1989, Journal of virology,
L W Engel, and C A Heilman, and P M Howley
October 1982, Nature,
L W Engel, and C A Heilman, and P M Howley
July 1985, Journal of the National Cancer Institute,
L W Engel, and C A Heilman, and P M Howley
June 1997, Journal of virology,
Copied contents to your clipboard!