The interaction between GABA and dopamine: implications for schizophrenia. 1983

J C Garbutt, and D P van Kammen

A role for gamma-aminobutyric acid (GABA) in the pathophysiology of schizophrenia was first suggested by Eugene Roberts in 1972. Since then considerable work has been accomplished in both the clinical and basic sciences regarding GABA and schizophrenia. Although it was originally thought that GABA might be useful in treating schizophrenia because of its inhibition of dopaminergic activity, recent data have shown that in certain models GABA has the opposite effect on dopaminergic functions. Regardless of the relationships of GABA to dopamine, neither biochemical nor pharmacological studies have been able to demonstrate a clear and reproducible GABA disturbance in schizophrenia. A number of problems contribute to the difficulty in studying GABA in schizophrenia, including the lack of specific and nontoxic GABA agonists as well as the complexity of the GABA system in brain. Interest in GABA research in schizophrenia appears to have waned, but several areas nevertheless appear promising for clinical investigation.

UI MeSH Term Description Entries
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002375 Catalepsy A condition characterized by inactivity, decreased responsiveness to stimuli, and a tendency to maintain an immobile posture. The limbs tend to remain in whatever position they are placed (waxy flexibility). Catalepsy may be associated with PSYCHOTIC DISORDERS (e.g., SCHIZOPHRENIA, CATATONIC), nervous system drug toxicity, and other conditions. Cerea Flexibilitas,Flexibility, Waxy,Anochlesia,Anochlesias,Catalepsies,Flexibilitas, Cerea,Flexibilities, Waxy,Waxy Flexibilities,Waxy Flexibility
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J C Garbutt, and D P van Kammen
January 1997, Schizophrenia bulletin,
J C Garbutt, and D P van Kammen
January 1980, Pharmacology, biochemistry, and behavior,
J C Garbutt, and D P van Kammen
February 1977, The American journal of psychiatry,
J C Garbutt, and D P van Kammen
January 1974, Psychopharmacologia,
J C Garbutt, and D P van Kammen
January 1997, Journal of psychiatric research,
J C Garbutt, and D P van Kammen
January 1982, Vestnik Akademii meditsinskikh nauk SSSR,
Copied contents to your clipboard!