Small-angle X-ray scattering study of adenosine triphosphatase from thermophilic bacterium PS3. 1983

T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa

Adenosine triphosphatase from the thermophilic bacterium PS3(TF1) has been studied by solution X-ray scattering. A structural change in TF1 caused by the binding of ADP was observed by examining the difference between the radii of gyration of the unligated and ligated forms. The radius of gyration of the unligated TF1 was found to be 49.5 +/- 0.3 A, and it decreased by approximately 3% after ligation with ADP. The positions and the amplitudes of a subsidiary maximum and a shoulder in the scattering profile showed subtle change on nucleotide binding. The lower limit of the maximum length of TF1 was determined to be 165 A for the unligated form and 150 A for the ligated form. The shape analysis of TF1 was performed by model calculations for simple triaxial bodies or their complexes. Among the various models tested, the one that gave the best fit with the experimental data consisted of seven ellipsoids of revolution; six identical ellipsoids with semi-axes: a = b = 18.5 A and c = 74 A. arranged hexagonally, and the other with a = b = 28 A and c = 45 A, located below the other six on the 6-fold axis. On the basis of this model it was suggested that there is a structural change on ligation with nucleotides, consisting of a shrinkage of the six long ellipsoids by 6% along their major axes.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D017301 Ca(2+) Mg(2+)-ATPase An enzyme that catalyzes the hydrolysis of ATP and is activated by millimolar concentrations of either Ca(2+) or Mg(2+). Unlike CA(2+)-TRANSPORTING ATPASE it does not require the second divalent cation for its activity, and is not sensitive to orthovanadate. (Prog Biophys Mol Biol 1988;52(1):1). A subgroup of EC 3.6.1.3. ATPase, Calcium Magnesium,ATPase, Magnesium,Adenosinetriphosphatase, Calcium, Magnesium,Adenosinetriphosphatase, Magnesium,Calcium Magnesium ATPase,Calcium Magnesium Adenosinetriphosphatase,Magnesium ATPase,Magnesium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium, Magnesium,Adenosine Triphosphatase, Magnesium,Ca Mg-ATPase,Ca2+-Mg2+ ATPase,Calcium Magnesium Adenosine Triphosphatase,Mg2+-ATPase,Mg2+-Dependent ATPase,ATPase, Ca2+-Mg2+,ATPase, Mg2+-Dependent,Adenosinetriphosphatase, Calcium Magnesium,Ca Mg ATPase,Ca2+ Mg2+ ATPase,Magnesium Adenosine Triphosphatase,Mg2+ ATPase,Mg2+ Dependent ATPase

Related Publications

T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
December 1982, Journal of biochemistry,
T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
May 1990, Journal of molecular biology,
T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
October 1977, Biochimica et biophysica acta,
T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
December 1952, Nature,
T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
January 1979, Methods in enzymology,
T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
January 1973, Methods in enzymology,
T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
January 1986, Methods in enzymology,
T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
December 1988, Physical review. A, General physics,
T Furuno, and A Ikegami, and H Kihara, and M Yoshida, and Y Kagawa
January 1981, The Journal of biological chemistry,
Copied contents to your clipboard!