Studies on conformational transitions of Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. I. Selective labeling of functionally distinct sulfhydryl groups with conformational probes and evidence for a Ca2+-dependent conformational change. 1983

K Yasuoka-Yabe, and M Kawakita

Several maleimide derivatives of potential usefulness as conformational probes were tested for reactivity toward SH groups of Ca2+, Mg2+-ATPase of sarcoplasmic reticulum. These include three fluorescent labels, N-(1-anilinonaphthyl-4)maleimide (ANM), N-(p-(2-benzimidazolyl)phenyl)maleimide (BIPM), and N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide (DACM), and a spin label, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl (MSL). These reagents also exhibit a selective reactivity toward SH groups which is similar to that of N-ethylmaleimide, although these conformational probes were somewhat more reactive than N-ethylmaleimide. Based on the above finding, procedures were devised to specifically label either one of two reactive SH groups of the ATPase, namely one highly reactive but functionally nonessential (SHN) and the other, essential for the decomposition of the E-P intermediate (SHD) [Kawakita, M., et al. (1980) J. Biochem. 87, 609-617], with any one of these conformational probes. Sarcoplasmic reticulum membranes labeled with ANM at either SHN or SHD showed a characteristic fluorescence whose intensity reversibly changed in response to the removal and readdition of Ca2+ ions in the range of 10(-6) to 10(-7) M. The change could be ascribed to a conformational change of the ATPase in response to dissociation and association of Ca2+ ions at the transport site. The Ca2+-dependent fluorescence change was quantitatively different, depending on whether the ATPase was labeled at SHN or SHD. Moreover, it was probe-specific in that BIPM and DACM fluorescence did not change in response to Ca2+. The possible significance of these observations is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

K Yasuoka-Yabe, and M Kawakita
January 1982, Zeitschrift fur Naturforschung. Section C, Biosciences,
K Yasuoka-Yabe, and M Kawakita
December 2000, Naunyn-Schmiedeberg's archives of pharmacology,
K Yasuoka-Yabe, and M Kawakita
November 1986, Archives of biochemistry and biophysics,
Copied contents to your clipboard!