DNA-dependent nucleoside 5'-triphosphatase activity of the gene 4 protein of bacteriophage T7. 1983

S W Matson, and C C Richardson

The gene 4 protein of bacteriophage T7 is both a primase and a helicase. In this paper, we present a detailed description of a third activity, single-stranded DNA-dependent nucleoside 5'-triphosphate hydrolysis, and show that this activity is coupled to the unidirectional translocation of the gene 4 protein on single-stranded DNA (Tabor, S., and Richardson, C.C. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 205-209). The competitive inhibitor of NTP hydrolysis, beta, gamma-methylene dTTP, is also a potent inhibitor of gene 4 protein-dependent, RNA-primed DNA synthesis; inhibition is not due to a direct inhibition of T7 DNA polymerase or RNA primer synthesis. We conclude that the energy derived from the hydrolysis of NTPs by the gene 4 protein is required for translocation of the protein to primase recognition sites. Measurement of the rates of hydrolysis of NTPs using a variety of DNAs of known structure and length support the unidirectional translocation of the gene 4 protein on single-stranded DNA. Duplex DNA, RNA, and single-stranded DNA coated with single-stranded DNA-binding protein do not serve as effectors for the nucleoside triphosphatase of the gene 4 protein. Kinetic data suggest that the gene 4 protein does not remain bound to newly synthesized oligoribonucleotide primers but continues to search for other primase recognition sites. Although all the predominant naturally occurring NTPs except rCTP are hydrolyzed by the gene 4 protein, the enzyme shows specificity for dTTP with a Km of 0.4 mM. In the accompanying paper (Matson, S.W., Tabor, S., and Richardson, C.C. (1983) J. Biol. Chem. 258, 14017-14024), we show that the hydrolysis of NTPs is also required for the protein to function as a helicase in duplex regions of DNA.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

S W Matson, and C C Richardson
April 1977, Proceedings of the National Academy of Sciences of the United States of America,
S W Matson, and C C Richardson
January 1996, Chemical research in toxicology,
S W Matson, and C C Richardson
October 1995, The Journal of biological chemistry,
S W Matson, and C C Richardson
January 1993, The Journal of biological chemistry,
S W Matson, and C C Richardson
April 1989, The Journal of biological chemistry,
Copied contents to your clipboard!