Immunohistochemical localization of choline acetyltransferase using a monoclonal antibody: a radioautographic method. 1983

M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh

Monoclonal antibodies to rat striatal choline acetyltransferase were produced by fusion of sensitized mouse lymphocytes with murine plasmacytoma (NS1) cells. Two stable anti-choline acetyltransferase lines were established by limiting dilution cloning. Specificity of antibody was established by the following criteria: (1) on an enzyme linked immunosorbant assay, antibodies reacted against choline acetyltransferase which was highly purified; (2) by immunoprecipitation, monoclonal antibody bound to its antigen and precipitated choline acetyltransferase activity from solution, when used in conjunction with rabbit antimouse IgG; and (3) monoclonal antibody was shown to specifically localize cholinergic neurons. The monoclonal antibody to choline acetyltransferase was radiolabeled in culture by incubating hybridomas in medium containing 3H-labeled amino acids. This 3H-labeled antibody was used for radioautography on cryostat sections of rat peripheral and central nervous systems. In a sampling of areas, highly specific labeling of cholinergic structures was afforded at both light and electron microscopic levels. Double labeling of tyrosine hydroxylase, a catecholaminergic marker, and choline acetyltransferase was carried out by reacting sections first with the 3H-labeled antibody to choline acetyltransferase and then with rabbit antibody to tyrosine hydroxylase. The choline acetyltransferase label was radioautographically processed and tyrosine hydroxylase was visualized by the peroxidase-antiperoxidase method. The combined techniques of peroxidase and radioautographic histochemistry provide permanent electron dense labels which can be examined simultaneously within a single histologic section.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
June 1984, Life sciences,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
April 1983, Brain research,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
November 1975, Brain research,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
March 1982, Brain research,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
June 1977, Neurochemical research,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
July 1980, Brain research,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
March 1989, The Journal of comparative neurology,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
December 1983, Neuroscience letters,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
March 1987, Brain research bulletin,
M E Ross, and D H Park, and G Teitelman, and V M Pickel, and D J Reis, and T H Joh
May 1970, The Journal of physiology,
Copied contents to your clipboard!