The role of nucleotide pyrophosphatase in Mullerian duct regression. 1983

M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe

Mullerian inhibiting substance (MIS), a glycoprotein from the fetal testis causing regression of the embryonic Mullerian duct, can be inhibited in vitro in the presence of Mn2+ by a wide range of nucleotides including GTP, NAD, ATP, AMP, and several nonhydrolyzable synthetic ATP analogs. Extracellular nucleotide pyrophosphatase (NPPase), an enzyme able to hydrolyze the wide variety of the nucleotides and analogs found to inhibit Mullerian duct regression, was studied by histochemical staining (H. Sierakowska and D. Shugar (1963). Biochem. Biophys. Res. Commun. 11, 70-74) to determine if NPPase localized in or around the Mullerian duct during regression. Frozen sections of urogenital ridges from 14 1/2- to 17 1/2-day rat fetuses (n = 77) were incubated with a-naphthyl thymidine-5'-phosphate (naphthyl TMP) and Fast Red TR. Nucleotide pyrophosphatase hydrolyzes naphthyl TMP, releasing naphthol, which then reacts with Fast Red to produce color at the enzyme site. Nucleotide hydrolysis was detected around regressing male (n = 16) Mullerian duct cells at 16 1/2 days of gestation, but no hydrolysis was detected around female (n = 17) Mullerian duct cells at any stage. Controls (n = 24) incubated without substrate did not stain. Addition of exogenous ATP (n = 20) to the histochemical incubation medium inhibited nucleotide hydrolysis on male Mullerian ducts, suggesting that this staining is specific for pyrophosphatase activity. Results in vivo were confirmed in vitro by incubating 14 1/2 day female rat urogenital ridges with MIS for 72 hr prior to histochemical staining. The addition of testosterone to MIS was obligatory to detect staining in vitro (n = 10). The localized NPPase activity around the regressing Mullerian duct suggests that NPPase may appear as a consequence of duct regression and may act to control the degree of membrane phosphorylation by degrading excess trinucleotides.

UI MeSH Term Description Entries
D008297 Male Males
D009095 Mullerian Ducts A pair of ducts near the WOLFFIAN DUCTS in a developing embryo. In the male embryo, they degenerate with the appearance of testicular ANTI-MULLERIAN HORMONE. In the absence of anti-mullerian hormone, mullerian ducts give rise to the female reproductive tract, including the OVIDUCTS; UTERUS; CERVIX; and VAGINA. Muellerian Duct,Mullerian Duct,Muellerian Ducts,Duct, Muellerian,Duct, Mullerian,Ducts, Muellerian,Ducts, Mullerian
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011755 Pyrophosphatases A group of enzymes within the class EC 3.6.1.- that catalyze the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates. They may liberate either a mono- or diphosphate. EC 3.6.1.-. Pyrophosphatase
D005260 Female Females
D005835 Genitalia The external and internal organs involved in the functions of REPRODUCTION. Accessory Sex Organs,Genital Organs,Sex Organs, Accessory,Genital System,Genitals,Reproductive Organs,Reproductive System,Accessory Sex Organ,Genital,Genital Organ,Genital Systems,Organ, Accessory Sex,Organ, Genital,Organ, Reproductive,Organs, Accessory Sex,Organs, Genital,Organs, Reproductive,Reproductive Organ,Reproductive Systems,Sex Organ, Accessory,System, Genital,System, Reproductive,Systems, Genital,Systems, Reproductive
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth

Related Publications

M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe
October 1982, Journal of pediatric surgery,
M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe
January 1984, Journal of experimental pathology,
M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe
January 1973, Comptes rendus des seances de la Societe de biologie et de ses filiales,
M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe
January 1985, General and comparative endocrinology,
M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe
October 1991, Biology of reproduction,
M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe
May 1984, Endocrinology,
M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe
July 1982, Developmental biology,
M E Fallat, and J M Hutson, and G P Budzik, and P K Donahoe
August 1947, The Journal of urology,
Copied contents to your clipboard!