[Effect of multiple daily administration of fenibut and diazepam on GABA and benzodiazepine receptors in the mouse brain]. 1983

L K Riago, and Kh A Sarv, and L Kh Allikmets

It was shown in experiments on mice that 25 hours after chronic treatment with fenibut (100 mg/kg, twice daily for 10 days) was discontinued the number of benzodiazepine and GABAA (bicucullin-sensitive) receptor sites was increased and 48 hours after treatment discontinuation the number of GABAB (bicucullin nonsensitive) sites was decreased. The enhanced binding to GABAA and GABAB receptor sites and the decreased binding to benzodiazepine receptors was observed 24 hours after discontinuation of chronic treatment with diazepam (5 mg/kg, twice daily). Forty-eight hours after diazepam chronic treatment was discontinued the number of benzodiazepine receptor sites was increased. The involvement of the increased benzodiazepine receptor sensitivity in the mechanism of therapeutic activity of fenibut is suggested.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008297 Male Males
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003975 Diazepam A benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of GAMMA-AMINOBUTYRIC ACID activity. 7-Chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one,Apaurin,Diazemuls,Faustan,Relanium,Seduxen,Sibazon,Stesolid,Valium
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D014151 Anti-Anxiety Agents Agents that alleviate ANXIETY, tension, and ANXIETY DISORDERS, promote sedation, and have a calming effect without affecting clarity of consciousness or neurologic conditions. ADRENERGIC BETA-ANTAGONISTS are commonly used in the symptomatic treatment of anxiety but are not included here. Anti-Anxiety Agent,Anti-Anxiety Drug,Anxiolytic,Anxiolytic Agent,Anxiolytic Agents,Tranquilizing Agents, Minor,Anti-Anxiety Drugs,Anti-Anxiety Effect,Anti-Anxiety Effects,Antianxiety Effect,Antianxiety Effects,Anxiolytic Effect,Anxiolytic Effects,Anxiolytics,Tranquillizing Agents, Minor,Agent, Anti-Anxiety,Agent, Anxiolytic,Agents, Anti-Anxiety,Agents, Anxiolytic,Agents, Minor Tranquilizing,Agents, Minor Tranquillizing,Anti Anxiety Agent,Anti Anxiety Agents,Anti Anxiety Drug,Anti Anxiety Drugs,Anti Anxiety Effect,Anti Anxiety Effects,Drug, Anti-Anxiety,Drugs, Anti-Anxiety,Effect, Anti-Anxiety,Effect, Antianxiety,Effect, Anxiolytic,Effects, Anti-Anxiety,Effects, Antianxiety,Effects, Anxiolytic,Minor Tranquilizing Agents,Minor Tranquillizing Agents
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

L K Riago, and Kh A Sarv, and L Kh Allikmets
May 1982, Biulleten' eksperimental'noi biologii i meditsiny,
L K Riago, and Kh A Sarv, and L Kh Allikmets
January 1991, Life sciences,
L K Riago, and Kh A Sarv, and L Kh Allikmets
November 1982, Biulleten' eksperimental'noi biologii i meditsiny,
L K Riago, and Kh A Sarv, and L Kh Allikmets
June 1985, Biulleten' eksperimental'noi biologii i meditsiny,
L K Riago, and Kh A Sarv, and L Kh Allikmets
April 1986, Biulleten' eksperimental'noi biologii i meditsiny,
L K Riago, and Kh A Sarv, and L Kh Allikmets
October 1989, European journal of pharmacology,
L K Riago, and Kh A Sarv, and L Kh Allikmets
October 1972, The Journal of pharmacy and pharmacology,
L K Riago, and Kh A Sarv, and L Kh Allikmets
January 1986, Schweizer Archiv fur Neurologie und Psychiatrie (Zurich, Switzerland : 1985),
L K Riago, and Kh A Sarv, and L Kh Allikmets
December 2009, Journal of neurochemistry,
L K Riago, and Kh A Sarv, and L Kh Allikmets
October 1980, Neuropharmacology,
Copied contents to your clipboard!